5 changed files with 734 additions and 174 deletions
-
2src/core/CMakeLists.txt
-
398src/core/hle/service/y2r_u.cpp
-
96src/core/hle/service/y2r_u.h
-
369src/core/hw/y2r.cpp
-
15src/core/hw/y2r.h
@ -0,0 +1,369 @@ |
|||||
|
// Copyright 2015 Citra Emulator Project
|
||||
|
// Licensed under GPLv2 or any later version
|
||||
|
// Refer to the license.txt file included.
|
||||
|
|
||||
|
#include <array>
|
||||
|
#include <numeric>
|
||||
|
|
||||
|
#include "common/assert.h"
|
||||
|
#include "common/color.h"
|
||||
|
#include "common/common_types.h"
|
||||
|
#include "common/math_util.h"
|
||||
|
#include "common/vector_math.h"
|
||||
|
|
||||
|
#include "core/hle/service/y2r_u.h"
|
||||
|
#include "core/memory.h"
|
||||
|
|
||||
|
namespace HW { |
||||
|
namespace Y2R { |
||||
|
|
||||
|
using namespace Y2R_U; |
||||
|
|
||||
|
static const size_t MAX_TILES = 1024 / 8; |
||||
|
static const size_t TILE_SIZE = 8 * 8; |
||||
|
using ImageTile = std::array<u32, TILE_SIZE>; |
||||
|
|
||||
|
/// Converts a image strip from the source YUV format into individual 8x8 RGB32 tiles.
|
||||
|
static void ConvertYUVToRGB(InputFormat input_format, |
||||
|
const u8* input_Y, const u8* input_U, const u8* input_V, ImageTile output[], |
||||
|
unsigned int width, unsigned int height, const CoefficientSet& coefficients) { |
||||
|
|
||||
|
for (unsigned int y = 0; y < height; ++y) { |
||||
|
for (unsigned int x = 0; x < width; ++x) { |
||||
|
s32 Y, U, V; |
||||
|
switch (input_format) { |
||||
|
case InputFormat::YUV422_Indiv8: |
||||
|
case InputFormat::YUV422_Indiv16: |
||||
|
Y = input_Y[y * width + x]; |
||||
|
U = input_U[(y * width + x) / 2]; |
||||
|
V = input_V[(y * width + x) / 2]; |
||||
|
break; |
||||
|
case InputFormat::YUV420_Indiv8: |
||||
|
case InputFormat::YUV420_Indiv16: |
||||
|
Y = input_Y[y * width + x]; |
||||
|
U = input_U[((y / 2) * width + x) / 2]; |
||||
|
V = input_V[((y / 2) * width + x) / 2]; |
||||
|
break; |
||||
|
case InputFormat::YUYV422_Interleaved: |
||||
|
Y = input_Y[(y * width + x) * 2]; |
||||
|
U = input_Y[(y * width + (x / 2) * 2) * 2 + 1]; |
||||
|
V = input_Y[(y * width + (x / 2) * 2) * 2 + 3]; |
||||
|
break; |
||||
|
} |
||||
|
|
||||
|
// This conversion process is bit-exact with hardware, as far as could be tested.
|
||||
|
auto& c = coefficients; |
||||
|
s32 cY = c[0]*Y; |
||||
|
|
||||
|
s32 r = cY + c[1]*V; |
||||
|
s32 g = cY - c[3]*U - c[2]*V; |
||||
|
s32 b = cY + c[4]*U; |
||||
|
|
||||
|
const s32 rounding_offset = 0x18; |
||||
|
r = (r >> 3) + c[5] + rounding_offset; |
||||
|
g = (g >> 3) + c[6] + rounding_offset; |
||||
|
b = (b >> 3) + c[7] + rounding_offset; |
||||
|
|
||||
|
unsigned int tile = x / 8; |
||||
|
unsigned int tile_x = x % 8; |
||||
|
u32* out = &output[tile][y * 8 + tile_x]; |
||||
|
|
||||
|
using MathUtil::Clamp; |
||||
|
*out = ((u32)Clamp(r >> 5, 0, 0xFF) << 24) | |
||||
|
((u32)Clamp(g >> 5, 0, 0xFF) << 16) | |
||||
|
((u32)Clamp(b >> 5, 0, 0xFF) << 8); |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
/// Simulates an incoming CDMA transfer. The N parameter is used to automatically convert 16-bit formats to 8-bit.
|
||||
|
template <size_t N> |
||||
|
static void ReceiveData(u8* output, ConversionBuffer& buf, size_t amount_of_data) { |
||||
|
const u8* input = Memory::GetPointer(buf.address); |
||||
|
|
||||
|
size_t output_unit = buf.transfer_unit / N; |
||||
|
ASSERT(amount_of_data % output_unit == 0); |
||||
|
|
||||
|
while (amount_of_data > 0) { |
||||
|
for (size_t i = 0; i < output_unit; ++i) { |
||||
|
output[i] = input[i * N]; |
||||
|
} |
||||
|
|
||||
|
output += output_unit; |
||||
|
input += buf.transfer_unit + buf.gap; |
||||
|
|
||||
|
buf.address += buf.transfer_unit + buf.gap; |
||||
|
buf.image_size -= buf.transfer_unit; |
||||
|
amount_of_data -= output_unit; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
/// Convert intermediate RGB32 format to the final output format while simulating an outgoing CDMA transfer.
|
||||
|
static void SendData(const u32* input, ConversionBuffer& buf, int amount_of_data, |
||||
|
OutputFormat output_format, u8 alpha) { |
||||
|
|
||||
|
u8* output = Memory::GetPointer(buf.address); |
||||
|
|
||||
|
while (amount_of_data > 0) { |
||||
|
u8* unit_end = output + buf.transfer_unit; |
||||
|
while (output < unit_end) { |
||||
|
u32 color = *input++; |
||||
|
Math::Vec4<u8> col_vec{ |
||||
|
(color >> 24) & 0xFF, (color >> 16) & 0xFF, (color >> 8) & 0xFF, alpha, |
||||
|
}; |
||||
|
|
||||
|
switch (output_format) { |
||||
|
case OutputFormat::RGBA8: |
||||
|
Color::EncodeRGBA8(col_vec, output); |
||||
|
output += 4; |
||||
|
break; |
||||
|
case OutputFormat::RGB8: |
||||
|
Color::EncodeRGB8(col_vec, output); |
||||
|
output += 3; |
||||
|
break; |
||||
|
case OutputFormat::RGB5A1: |
||||
|
Color::EncodeRGB5A1(col_vec, output); |
||||
|
output += 2; |
||||
|
break; |
||||
|
case OutputFormat::RGB565: |
||||
|
Color::EncodeRGB565(col_vec, output); |
||||
|
output += 2; |
||||
|
break; |
||||
|
} |
||||
|
|
||||
|
amount_of_data -= 1; |
||||
|
} |
||||
|
|
||||
|
output += buf.gap; |
||||
|
buf.address += buf.transfer_unit + buf.gap; |
||||
|
buf.image_size -= buf.transfer_unit; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
static const u8 linear_lut[64] = { |
||||
|
0, 1, 2, 3, 4, 5, 6, 7, |
||||
|
8, 9, 10, 11, 12, 13, 14, 15, |
||||
|
16, 17, 18, 19, 20, 21, 22, 23, |
||||
|
24, 25, 26, 27, 28, 29, 30, 31, |
||||
|
32, 33, 34, 35, 36, 37, 38, 39, |
||||
|
40, 41, 42, 43, 44, 45, 46, 47, |
||||
|
48, 49, 50, 51, 52, 53, 54, 55, |
||||
|
56, 57, 58, 59, 60, 61, 62, 63, |
||||
|
}; |
||||
|
|
||||
|
static const u8 morton_lut[64] = { |
||||
|
0, 1, 4, 5, 16, 17, 20, 21, |
||||
|
2, 3, 6, 7, 18, 19, 22, 23, |
||||
|
8, 9, 12, 13, 24, 25, 28, 29, |
||||
|
10, 11, 14, 15, 26, 27, 30, 31, |
||||
|
32, 33, 36, 37, 48, 49, 52, 53, |
||||
|
34, 35, 38, 39, 50, 51, 54, 55, |
||||
|
40, 41, 44, 45, 56, 57, 60, 61, |
||||
|
42, 43, 46, 47, 58, 59, 62, 63, |
||||
|
}; |
||||
|
|
||||
|
static void RotateTile0(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { |
||||
|
for (int i = 0; i < height * 8; ++i) { |
||||
|
output[out_map[i]] = input[i]; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
static void RotateTile90(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { |
||||
|
int out_i = 0; |
||||
|
for (int x = 0; x < 8; ++x) { |
||||
|
for (int y = height - 1; y >= 0; --y) { |
||||
|
output[out_map[out_i++]] = input[y * 8 + x]; |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
static void RotateTile180(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { |
||||
|
int out_i = 0; |
||||
|
for (int i = height * 8 - 1; i >= 0; --i) { |
||||
|
output[out_map[out_i++]] = input[i]; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
static void RotateTile270(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { |
||||
|
int out_i = 0; |
||||
|
for (int x = 8-1; x >= 0; --x) { |
||||
|
for (int y = 0; y < height; ++y) { |
||||
|
output[out_map[out_i++]] = input[y * 8 + x]; |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
static void WriteTileToOutput(u32* output, const ImageTile& tile, int height, int line_stride) { |
||||
|
for (int y = 0; y < height; ++y) { |
||||
|
for (int x = 0; x < 8; ++x) { |
||||
|
output[y * line_stride + x] = tile[y * 8 + x]; |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
/**
|
||||
|
* Performs a Y2R colorspace conversion. |
||||
|
* |
||||
|
* The Y2R hardware implements hardware-accelerated YUV to RGB colorspace conversions. It is most |
||||
|
* commonly used for video playback or to display camera input to the screen. |
||||
|
* |
||||
|
* The conversion process is quite configurable, and can be divided in distinct steps. From |
||||
|
* observation, it appears that the hardware buffers a single 8-pixel tall strip of image data |
||||
|
* internally and converts it in one go before writing to the output and loading the next strip. |
||||
|
* |
||||
|
* The steps taken to convert one strip of image data are: |
||||
|
* |
||||
|
* - The hardware receives data via CDMA (http://3dbrew.org/wiki/Corelink_DMA_Engines), which is
|
||||
|
* presumably stored in one or more internal buffers. This process can be done in several separate |
||||
|
* transfers, as long as they don't exceed the size of the internal image buffer. This allows |
||||
|
* flexibility in input strides. |
||||
|
* - The input data is decoded into a YUV tuple. Several formats are suported, see the `InputFormat` |
||||
|
* enum. |
||||
|
* - The YUV tuple is converted, using fixed point calculations, to RGB. This step can be configured |
||||
|
* using a set of coefficients to support different colorspace standards. See `CoefficientSet`. |
||||
|
* - The strip can be optionally rotated 90, 180 or 270 degrees. Since each strip is processed |
||||
|
* independently, this notably rotates each *strip*, not the entire image. This means that for 90 |
||||
|
* or 270 degree rotations, the output will be in terms of several 8 x height images, and for any |
||||
|
* non-zero rotation the strips will have to be re-arranged so that the parts of the image will |
||||
|
* not be shuffled together. This limitation makes this a feature of somewhat dubious utility. 90 |
||||
|
* or 270 degree rotations in images with non-even height don't seem to work properly. |
||||
|
* - The data is converted to the output RGB format. See the `OutputFormat` enum. |
||||
|
* - The data can be output either linearly line-by-line or in the swizzled 8x8 tile format used by |
||||
|
* the PICA. This is decided by the `BlockAlignment` enum. If 8x8 alignment is used, then the |
||||
|
* image must have a height divisible by 8. The image width must always be divisible by 8. |
||||
|
* - The final data is then CDMAed out to main memory and the next image strip is processed. This |
||||
|
* offers the same flexibility as the input stage. |
||||
|
* |
||||
|
* In this implementation, to avoid the combinatorial explosion of parameter combinations, common |
||||
|
* intermediate formats are used and where possible tables or parameters are used instead of |
||||
|
* diverging code paths to keep the amount of branches in check. Some steps are also merged to |
||||
|
* increase efficiency. |
||||
|
* |
||||
|
* Output for all valid settings combinations matches hardware, however output in some edge-cases |
||||
|
* differs: |
||||
|
* |
||||
|
* - `Block8x8` alignment with non-mod8 height produces different garbage patterns on the last |
||||
|
* strip, especially when combined with rotation. |
||||
|
* - Hardware, when using `Linear` alignment with a non-even height and 90 or 270 degree rotation |
||||
|
* produces misaligned output on the last strip. This implmentation produces output with the |
||||
|
* correct "expected" alignment. |
||||
|
* |
||||
|
* Hardware behaves strangely (doesn't fire the completion interrupt, for example) in these cases, |
||||
|
* so they are believed to be invalid configurations anyway. |
||||
|
*/ |
||||
|
void PerformConversion(ConversionConfiguration& cvt) { |
||||
|
ASSERT(cvt.input_line_width % 8 == 0); |
||||
|
ASSERT(cvt.block_alignment != BlockAlignment::Block8x8 || cvt.input_lines % 8 == 0); |
||||
|
// Tiles per row
|
||||
|
size_t num_tiles = cvt.input_line_width / 8; |
||||
|
ASSERT(num_tiles < MAX_TILES); |
||||
|
|
||||
|
// Buffer used as a CDMA source/target.
|
||||
|
std::unique_ptr<u8[]> data_buffer(new u8[cvt.input_line_width * 8 * 4]); |
||||
|
// Intermediate storage for decoded 8x8 image tiles. Always stored as RGB32.
|
||||
|
std::unique_ptr<ImageTile[]> tiles(new ImageTile[num_tiles]); |
||||
|
ImageTile tmp_tile; |
||||
|
|
||||
|
// LUT used to remap writes to a tile. Used to allow linear or swizzled output without
|
||||
|
// requiring two different code paths.
|
||||
|
const u8* tile_remap; |
||||
|
switch (cvt.block_alignment) { |
||||
|
case BlockAlignment::Linear: |
||||
|
tile_remap = linear_lut; break; |
||||
|
case BlockAlignment::Block8x8: |
||||
|
tile_remap = morton_lut; break; |
||||
|
} |
||||
|
|
||||
|
for (unsigned int y = 0; y < cvt.input_lines; y += 8) { |
||||
|
unsigned int row_height = std::min(cvt.input_lines - y, 8u); |
||||
|
|
||||
|
// Total size in pixels of incoming data required for this strip.
|
||||
|
const size_t row_data_size = row_height * cvt.input_line_width; |
||||
|
|
||||
|
u8* input_Y = data_buffer.get(); |
||||
|
u8* input_U = input_Y + 8 * cvt.input_line_width; |
||||
|
u8* input_V = input_U + 8 * cvt.input_line_width / 2; |
||||
|
|
||||
|
switch (cvt.input_format) { |
||||
|
case InputFormat::YUV422_Indiv8: |
||||
|
ReceiveData<1>(input_Y, cvt.src_Y, row_data_size); |
||||
|
ReceiveData<1>(input_U, cvt.src_U, row_data_size / 2); |
||||
|
ReceiveData<1>(input_V, cvt.src_V, row_data_size / 2); |
||||
|
break; |
||||
|
case InputFormat::YUV420_Indiv8: |
||||
|
ReceiveData<1>(input_Y, cvt.src_Y, row_data_size); |
||||
|
ReceiveData<1>(input_U, cvt.src_U, row_data_size / 4); |
||||
|
ReceiveData<1>(input_V, cvt.src_V, row_data_size / 4); |
||||
|
break; |
||||
|
case InputFormat::YUV422_Indiv16: |
||||
|
ReceiveData<2>(input_Y, cvt.src_Y, row_data_size); |
||||
|
ReceiveData<2>(input_U, cvt.src_U, row_data_size / 2); |
||||
|
ReceiveData<2>(input_V, cvt.src_V, row_data_size / 2); |
||||
|
break; |
||||
|
case InputFormat::YUV420_Indiv16: |
||||
|
ReceiveData<2>(input_Y, cvt.src_Y, row_data_size); |
||||
|
ReceiveData<2>(input_U, cvt.src_U, row_data_size / 4); |
||||
|
ReceiveData<2>(input_V, cvt.src_V, row_data_size / 4); |
||||
|
break; |
||||
|
case InputFormat::YUYV422_Interleaved: |
||||
|
input_U = nullptr; |
||||
|
input_V = nullptr; |
||||
|
ReceiveData<1>(input_Y, cvt.src_YUYV, row_data_size * 2); |
||||
|
break; |
||||
|
} |
||||
|
|
||||
|
// Note(yuriks): If additional optimization is required, input_format can be moved to a
|
||||
|
// template parameter, so that its dispatch can be moved to outside the inner loop.
|
||||
|
ConvertYUVToRGB(cvt.input_format, input_Y, input_U, input_V, tiles.get(), |
||||
|
cvt.input_line_width, row_height, cvt.coefficients); |
||||
|
|
||||
|
u32* output_buffer = reinterpret_cast<u32*>(data_buffer.get()); |
||||
|
|
||||
|
for (int i = 0; i < num_tiles; ++i) { |
||||
|
int image_strip_width, output_stride; |
||||
|
|
||||
|
switch (cvt.rotation) { |
||||
|
case Rotation::None: |
||||
|
RotateTile0(tiles[i], tmp_tile, row_height, tile_remap); |
||||
|
image_strip_width = cvt.input_line_width; |
||||
|
output_stride = 8; |
||||
|
break; |
||||
|
case Rotation::Clockwise_90: |
||||
|
RotateTile90(tiles[i], tmp_tile, row_height, tile_remap); |
||||
|
image_strip_width = 8; |
||||
|
output_stride = 8 * row_height; |
||||
|
break; |
||||
|
case Rotation::Clockwise_180: |
||||
|
// For 180 and 270 degree rotations we also invert the order of tiles in the strip,
|
||||
|
// since the rotates are done individually on each tile.
|
||||
|
RotateTile180(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap); |
||||
|
image_strip_width = cvt.input_line_width; |
||||
|
output_stride = 8; |
||||
|
break; |
||||
|
case Rotation::Clockwise_270: |
||||
|
RotateTile270(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap); |
||||
|
image_strip_width = 8; |
||||
|
output_stride = 8 * row_height; |
||||
|
break; |
||||
|
} |
||||
|
|
||||
|
switch (cvt.block_alignment) { |
||||
|
case BlockAlignment::Linear: |
||||
|
WriteTileToOutput(output_buffer, tmp_tile, row_height, image_strip_width); |
||||
|
output_buffer += output_stride; |
||||
|
break; |
||||
|
case BlockAlignment::Block8x8: |
||||
|
WriteTileToOutput(output_buffer, tmp_tile, 8, 8); |
||||
|
output_buffer += TILE_SIZE; |
||||
|
break; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
// Note(yuriks): If additional optimization is required, output_format can be moved to a
|
||||
|
// template parameter, so that its dispatch can be moved to outside the inner loop.
|
||||
|
SendData(reinterpret_cast<u32*>(data_buffer.get()), cvt.dst, (int)row_data_size, cvt.output_format, (u8)cvt.alpha); |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
} |
||||
|
} |
||||
@ -0,0 +1,15 @@ |
|||||
|
// Copyright 2015 Citra Emulator Project |
||||
|
// Licensed under GPLv2 or any later version |
||||
|
// Refer to the license.txt file included. |
||||
|
|
||||
|
namespace Y2R_U { |
||||
|
struct ConversionConfiguration; |
||||
|
} |
||||
|
|
||||
|
namespace HW { |
||||
|
namespace Y2R { |
||||
|
|
||||
|
void PerformConversion(Y2R_U::ConversionConfiguration& cvt); |
||||
|
|
||||
|
} |
||||
|
} |
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue