Browse Source
bounded_threadsafe_queue: Use simplified impl of bounded queue
bounded_threadsafe_queue: Use simplified impl of bounded queue
Provides a simplified SPSC, MPSC, and MPMC bounded queue implementation using mutexes.nce_cpp
2 changed files with 203 additions and 115 deletions
@ -1,159 +1,246 @@ |
|||
// SPDX-FileCopyrightText: Copyright (c) 2020 Erik Rigtorp <erik@rigtorp.se> |
|||
// SPDX-License-Identifier: MIT |
|||
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project |
|||
// SPDX-License-Identifier: GPL-2.0-or-later |
|||
|
|||
#pragma once |
|||
|
|||
#include <atomic> |
|||
#include <bit> |
|||
#include <condition_variable> |
|||
#include <memory> |
|||
#include <cstddef> |
|||
#include <mutex> |
|||
#include <new> |
|||
#include <type_traits> |
|||
#include <utility> |
|||
|
|||
#include "common/polyfill_thread.h" |
|||
|
|||
namespace Common { |
|||
|
|||
#if defined(__cpp_lib_hardware_interference_size) |
|||
constexpr size_t hardware_interference_size = std::hardware_destructive_interference_size; |
|||
#else |
|||
constexpr size_t hardware_interference_size = 64; |
|||
#endif |
|||
namespace detail { |
|||
constexpr size_t DefaultCapacity = 0x1000; |
|||
} // namespace detail |
|||
|
|||
template <typename T, size_t Capacity = detail::DefaultCapacity> |
|||
class SPSCQueue { |
|||
static_assert((Capacity & (Capacity - 1)) == 0, "Capacity must be a power of two."); |
|||
|
|||
template <typename T, size_t capacity = 0x400> |
|||
class MPSCQueue { |
|||
public: |
|||
explicit MPSCQueue() : allocator{std::allocator<Slot<T>>()} { |
|||
// Allocate one extra slot to prevent false sharing on the last slot |
|||
slots = allocator.allocate(capacity + 1); |
|||
// Allocators are not required to honor alignment for over-aligned types |
|||
// (see http://eel.is/c++draft/allocator.requirements#10) so we verify |
|||
// alignment here |
|||
if (reinterpret_cast<uintptr_t>(slots) % alignof(Slot<T>) != 0) { |
|||
allocator.deallocate(slots, capacity + 1); |
|||
throw std::bad_alloc(); |
|||
} |
|||
for (size_t i = 0; i < capacity; ++i) { |
|||
std::construct_at(&slots[i]); |
|||
void Push(T&& t) { |
|||
const size_t write_index = m_write_index.load(); |
|||
|
|||
// Wait until we have free slots to write to. |
|||
while ((write_index - m_read_index.load()) == Capacity) { |
|||
std::this_thread::yield(); |
|||
} |
|||
static_assert(std::has_single_bit(capacity), "capacity must be an integer power of 2"); |
|||
static_assert(alignof(Slot<T>) == hardware_interference_size, |
|||
"Slot must be aligned to cache line boundary to prevent false sharing"); |
|||
static_assert(sizeof(Slot<T>) % hardware_interference_size == 0, |
|||
"Slot size must be a multiple of cache line size to prevent " |
|||
"false sharing between adjacent slots"); |
|||
static_assert(sizeof(MPSCQueue) % hardware_interference_size == 0, |
|||
"Queue size must be a multiple of cache line size to " |
|||
"prevent false sharing between adjacent queues"); |
|||
|
|||
// Determine the position to write to. |
|||
const size_t pos = write_index % Capacity; |
|||
|
|||
// Push into the queue. |
|||
m_data[pos] = std::move(t); |
|||
|
|||
// Increment the write index. |
|||
++m_write_index; |
|||
|
|||
// Notify the consumer that we have pushed into the queue. |
|||
std::scoped_lock lock{cv_mutex}; |
|||
cv.notify_one(); |
|||
} |
|||
|
|||
~MPSCQueue() noexcept { |
|||
for (size_t i = 0; i < capacity; ++i) { |
|||
std::destroy_at(&slots[i]); |
|||
template <typename... Args> |
|||
void Push(Args&&... args) { |
|||
const size_t write_index = m_write_index.load(); |
|||
|
|||
// Wait until we have free slots to write to. |
|||
while ((write_index - m_read_index.load()) == Capacity) { |
|||
std::this_thread::yield(); |
|||
} |
|||
allocator.deallocate(slots, capacity + 1); |
|||
|
|||
// Determine the position to write to. |
|||
const size_t pos = write_index % Capacity; |
|||
|
|||
// Emplace into the queue. |
|||
std::construct_at(std::addressof(m_data[pos]), std::forward<Args>(args)...); |
|||
|
|||
// Increment the write index. |
|||
++m_write_index; |
|||
|
|||
// Notify the consumer that we have pushed into the queue. |
|||
std::scoped_lock lock{cv_mutex}; |
|||
cv.notify_one(); |
|||
} |
|||
|
|||
// The queue must be both non-copyable and non-movable |
|||
MPSCQueue(const MPSCQueue&) = delete; |
|||
MPSCQueue& operator=(const MPSCQueue&) = delete; |
|||
bool TryPop(T& t) { |
|||
return Pop(t); |
|||
} |
|||
|
|||
MPSCQueue(MPSCQueue&&) = delete; |
|||
MPSCQueue& operator=(MPSCQueue&&) = delete; |
|||
void PopWait(T& t, std::stop_token stop_token) { |
|||
Wait(stop_token); |
|||
Pop(t); |
|||
} |
|||
|
|||
void Push(const T& v) noexcept { |
|||
static_assert(std::is_nothrow_copy_constructible_v<T>, |
|||
"T must be nothrow copy constructible"); |
|||
emplace(v); |
|||
T PopWait(std::stop_token stop_token) { |
|||
Wait(stop_token); |
|||
T t; |
|||
Pop(t); |
|||
return t; |
|||
} |
|||
|
|||
template <typename P, typename = std::enable_if_t<std::is_nothrow_constructible_v<T, P&&>>> |
|||
void Push(P&& v) noexcept { |
|||
emplace(std::forward<P>(v)); |
|||
void Clear() { |
|||
while (!Empty()) { |
|||
Pop(); |
|||
} |
|||
} |
|||
|
|||
void Pop(T& v, std::stop_token stop) noexcept { |
|||
auto const tail = tail_.fetch_add(1); |
|||
auto& slot = slots[idx(tail)]; |
|||
if (!slot.turn.test()) { |
|||
std::unique_lock lock{cv_mutex}; |
|||
Common::CondvarWait(cv, lock, stop, [&slot] { return slot.turn.test(); }); |
|||
bool Empty() const { |
|||
return m_read_index.load() == m_write_index.load(); |
|||
} |
|||
v = slot.move(); |
|||
slot.destroy(); |
|||
slot.turn.clear(); |
|||
slot.turn.notify_one(); |
|||
|
|||
size_t Size() const { |
|||
return m_write_index.load() - m_read_index.load(); |
|||
} |
|||
|
|||
private: |
|||
template <typename U = T> |
|||
struct Slot { |
|||
~Slot() noexcept { |
|||
if (turn.test()) { |
|||
destroy(); |
|||
void Pop() { |
|||
const size_t read_index = m_read_index.load(); |
|||
|
|||
// Check if the queue is empty. |
|||
if (read_index == m_write_index.load()) { |
|||
return; |
|||
} |
|||
|
|||
// Determine the position to read from. |
|||
const size_t pos = read_index % Capacity; |
|||
|
|||
// Pop the data off the queue, deleting it. |
|||
std::destroy_at(std::addressof(m_data[pos])); |
|||
|
|||
// Increment the read index. |
|||
++m_read_index; |
|||
} |
|||
|
|||
bool Pop(T& t) { |
|||
const size_t read_index = m_read_index.load(); |
|||
|
|||
// Check if the queue is empty. |
|||
if (read_index == m_write_index.load()) { |
|||
return false; |
|||
} |
|||
|
|||
// Determine the position to read from. |
|||
const size_t pos = read_index % Capacity; |
|||
|
|||
// Pop the data off the queue, moving it. |
|||
t = std::move(m_data[pos]); |
|||
|
|||
// Increment the read index. |
|||
++m_read_index; |
|||
|
|||
return true; |
|||
} |
|||
|
|||
void Wait(std::stop_token stop_token) { |
|||
std::unique_lock lock{cv_mutex}; |
|||
Common::CondvarWait(cv, lock, stop_token, [this] { return !Empty(); }); |
|||
} |
|||
|
|||
alignas(128) std::atomic_size_t m_read_index{0}; |
|||
alignas(128) std::atomic_size_t m_write_index{0}; |
|||
|
|||
std::array<T, Capacity> m_data; |
|||
|
|||
std::condition_variable_any cv; |
|||
std::mutex cv_mutex; |
|||
}; |
|||
|
|||
template <typename T, size_t Capacity = detail::DefaultCapacity> |
|||
class MPSCQueue { |
|||
public: |
|||
void Push(T&& t) { |
|||
std::scoped_lock lock{write_mutex}; |
|||
spsc_queue.Push(std::move(t)); |
|||
} |
|||
|
|||
template <typename... Args> |
|||
void construct(Args&&... args) noexcept { |
|||
static_assert(std::is_nothrow_constructible_v<U, Args&&...>, |
|||
"T must be nothrow constructible with Args&&..."); |
|||
std::construct_at(reinterpret_cast<U*>(&storage), std::forward<Args>(args)...); |
|||
void Push(Args&&... args) { |
|||
std::scoped_lock lock{write_mutex}; |
|||
spsc_queue.Push(std::forward<Args>(args)...); |
|||
} |
|||
|
|||
bool TryPop(T& t) { |
|||
return spsc_queue.TryPop(t); |
|||
} |
|||
|
|||
void PopWait(T& t, std::stop_token stop_token) { |
|||
spsc_queue.PopWait(t, stop_token); |
|||
} |
|||
|
|||
T PopWait(std::stop_token stop_token) { |
|||
return spsc_queue.PopWait(stop_token); |
|||
} |
|||
|
|||
void Clear() { |
|||
spsc_queue.Clear(); |
|||
} |
|||
|
|||
void destroy() noexcept { |
|||
static_assert(std::is_nothrow_destructible_v<U>, "T must be nothrow destructible"); |
|||
std::destroy_at(reinterpret_cast<U*>(&storage)); |
|||
bool Empty() { |
|||
return spsc_queue.Empty(); |
|||
} |
|||
|
|||
U&& move() noexcept { |
|||
return reinterpret_cast<U&&>(storage); |
|||
size_t Size() { |
|||
return spsc_queue.Size(); |
|||
} |
|||
|
|||
// Align to avoid false sharing between adjacent slots |
|||
alignas(hardware_interference_size) std::atomic_flag turn{}; |
|||
struct aligned_store { |
|||
struct type { |
|||
alignas(U) unsigned char data[sizeof(U)]; |
|||
}; |
|||
}; |
|||
typename aligned_store::type storage; |
|||
}; |
|||
private: |
|||
SPSCQueue<T, Capacity> spsc_queue; |
|||
std::mutex write_mutex; |
|||
}; |
|||
|
|||
template <typename T, size_t Capacity = detail::DefaultCapacity> |
|||
class MPMCQueue { |
|||
public: |
|||
void Push(T&& t) { |
|||
std::scoped_lock lock{write_mutex}; |
|||
spsc_queue.Push(std::move(t)); |
|||
} |
|||
|
|||
template <typename... Args> |
|||
void emplace(Args&&... args) noexcept { |
|||
static_assert(std::is_nothrow_constructible_v<T, Args&&...>, |
|||
"T must be nothrow constructible with Args&&..."); |
|||
auto const head = head_.fetch_add(1); |
|||
auto& slot = slots[idx(head)]; |
|||
slot.turn.wait(true); |
|||
slot.construct(std::forward<Args>(args)...); |
|||
slot.turn.test_and_set(); |
|||
cv.notify_one(); |
|||
void Push(Args&&... args) { |
|||
std::scoped_lock lock{write_mutex}; |
|||
spsc_queue.Push(std::forward<Args>(args)...); |
|||
} |
|||
|
|||
constexpr size_t idx(size_t i) const noexcept { |
|||
return i & mask; |
|||
bool TryPop(T& t) { |
|||
std::scoped_lock lock{read_mutex}; |
|||
return spsc_queue.TryPop(t); |
|||
} |
|||
|
|||
static constexpr size_t mask = capacity - 1; |
|||
void PopWait(T& t, std::stop_token stop_token) { |
|||
std::scoped_lock lock{read_mutex}; |
|||
spsc_queue.PopWait(t, stop_token); |
|||
} |
|||
|
|||
// Align to avoid false sharing between head_ and tail_ |
|||
alignas(hardware_interference_size) std::atomic<size_t> head_{0}; |
|||
alignas(hardware_interference_size) std::atomic<size_t> tail_{0}; |
|||
T PopWait(std::stop_token stop_token) { |
|||
std::scoped_lock lock{read_mutex}; |
|||
return spsc_queue.PopWait(stop_token); |
|||
} |
|||
|
|||
std::mutex cv_mutex; |
|||
std::condition_variable_any cv; |
|||
void Clear() { |
|||
std::scoped_lock lock{read_mutex}; |
|||
spsc_queue.Clear(); |
|||
} |
|||
|
|||
Slot<T>* slots; |
|||
[[no_unique_address]] std::allocator<Slot<T>> allocator; |
|||
bool Empty() { |
|||
std::scoped_lock lock{read_mutex}; |
|||
return spsc_queue.Empty(); |
|||
} |
|||
|
|||
static_assert(std::is_nothrow_copy_assignable_v<T> || std::is_nothrow_move_assignable_v<T>, |
|||
"T must be nothrow copy or move assignable"); |
|||
size_t Size() { |
|||
std::scoped_lock lock{read_mutex}; |
|||
return spsc_queue.Size(); |
|||
} |
|||
|
|||
static_assert(std::is_nothrow_destructible_v<T>, "T must be nothrow destructible"); |
|||
private: |
|||
SPSCQueue<T, Capacity> spsc_queue; |
|||
std::mutex write_mutex; |
|||
std::mutex read_mutex; |
|||
}; |
|||
|
|||
} // namespace Common |
|||
Write
Preview
Loading…
Cancel
Save
Reference in new issue