7 changed files with 260 additions and 2 deletions
-
2src/video_core/CMakeLists.txt
-
3src/video_core/clipper.cpp
-
52src/video_core/pica.h
-
180src/video_core/rasterizer.cpp
-
21src/video_core/rasterizer.h
-
2src/video_core/video_core.vcxproj
-
2src/video_core/video_core.vcxproj.filters
@ -0,0 +1,180 @@ |
|||
// Copyright 2014 Citra Emulator Project
|
|||
// Licensed under GPLv2
|
|||
// Refer to the license.txt file included.
|
|||
|
|||
#include <algorithm>
|
|||
|
|||
#include "common/common_types.h"
|
|||
|
|||
#include "math.h"
|
|||
#include "pica.h"
|
|||
#include "rasterizer.h"
|
|||
#include "vertex_shader.h"
|
|||
|
|||
namespace Pica { |
|||
|
|||
namespace Rasterizer { |
|||
|
|||
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { |
|||
u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress()); |
|||
u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); |
|||
|
|||
// Assuming RGBA8 format until actual framebuffer format handling is implemented
|
|||
*(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value; |
|||
} |
|||
|
|||
static u32 GetDepth(int x, int y) { |
|||
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress()); |
|||
|
|||
// Assuming 16-bit depth buffer format until actual format handling is implemented
|
|||
return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2); |
|||
} |
|||
|
|||
static void SetDepth(int x, int y, u16 value) { |
|||
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress()); |
|||
|
|||
// Assuming 16-bit depth buffer format until actual format handling is implemented
|
|||
*(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value; |
|||
} |
|||
|
|||
void ProcessTriangle(const VertexShader::OutputVertex& v0, |
|||
const VertexShader::OutputVertex& v1, |
|||
const VertexShader::OutputVertex& v2) |
|||
{ |
|||
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
|
|||
struct Fix12P4 { |
|||
Fix12P4() {} |
|||
Fix12P4(u16 val) : val(val) {} |
|||
|
|||
static u16 FracMask() { return 0xF; } |
|||
static u16 IntMask() { return (u16)~0xF; } |
|||
|
|||
operator u16() const { |
|||
return val; |
|||
} |
|||
|
|||
bool operator < (const Fix12P4& oth) const { |
|||
return (u16)*this < (u16)oth; |
|||
} |
|||
|
|||
private: |
|||
u16 val; |
|||
}; |
|||
|
|||
// vertex positions in rasterizer coordinates
|
|||
auto FloatToFix = [](float24 flt) { |
|||
return Fix12P4(flt.ToFloat32() * 16.0f); |
|||
}; |
|||
auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) { |
|||
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; |
|||
}; |
|||
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos), |
|||
ScreenToRasterizerCoordinates(v1.screenpos), |
|||
ScreenToRasterizerCoordinates(v2.screenpos) }; |
|||
|
|||
// TODO: Proper scissor rect test!
|
|||
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); |
|||
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); |
|||
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); |
|||
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); |
|||
|
|||
min_x = min_x & Fix12P4::IntMask(); |
|||
min_y = min_y & Fix12P4::IntMask(); |
|||
max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask(); |
|||
max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask(); |
|||
|
|||
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
|
|||
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
|
|||
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
|
|||
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
|
|||
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx, |
|||
const Math::Vec2<Fix12P4>& line1, |
|||
const Math::Vec2<Fix12P4>& line2) |
|||
{ |
|||
if (line1.y == line2.y) { |
|||
// just check if vertex is above us => bottom line parallel to x-axis
|
|||
return vtx.y < line1.y; |
|||
} else { |
|||
// check if vertex is on our left => right side
|
|||
// TODO: Not sure how likely this is to overflow
|
|||
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y); |
|||
} |
|||
}; |
|||
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; |
|||
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; |
|||
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; |
|||
|
|||
// TODO: Not sure if looping through x first might be faster
|
|||
for (u16 y = min_y; y < max_y; y += 0x10) { |
|||
for (u16 x = min_x; x < max_x; x += 0x10) { |
|||
|
|||
// Calculate the barycentric coordinates w0, w1 and w2
|
|||
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1, |
|||
const Math::Vec2<Fix12P4>& vtx2, |
|||
const Math::Vec2<Fix12P4>& vtx3) { |
|||
const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0); |
|||
const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0); |
|||
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
|
|||
return Cross(vec1, vec2).z; |
|||
}; |
|||
|
|||
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); |
|||
int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); |
|||
int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); |
|||
int wsum = w0 + w1 + w2; |
|||
|
|||
// If current pixel is not covered by the current primitive
|
|||
if (w0 < 0 || w1 < 0 || w2 < 0) |
|||
continue; |
|||
|
|||
// Perspective correct attribute interpolation:
|
|||
// Attribute values cannot be calculated by simple linear interpolation since
|
|||
// they are not linear in screen space. For example, when interpolating a
|
|||
// texture coordinate across two vertices, something simple like
|
|||
// u = (u0*w0 + u1*w1)/(w0+w1)
|
|||
// will not work. However, the attribute value divided by the
|
|||
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
|
|||
// in screenspace. Hence, we can linearly interpolate these two independently and
|
|||
// calculate the interpolated attribute by dividing the results.
|
|||
// I.e.
|
|||
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
|
|||
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
|
|||
// u = u_over_w / one_over_w
|
|||
//
|
|||
// The generalization to three vertices is straightforward in baricentric coordinates.
|
|||
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { |
|||
auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w, |
|||
attr1 / v1.pos.w, |
|||
attr2 / v2.pos.w); |
|||
auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w, |
|||
float24::FromFloat32(1.f) / v1.pos.w, |
|||
float24::FromFloat32(1.f) / v2.pos.w); |
|||
auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0), |
|||
float24::FromFloat32(w1), |
|||
float24::FromFloat32(w2)); |
|||
|
|||
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); |
|||
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates); |
|||
return interpolated_attr_over_w / interpolated_w_inverse; |
|||
}; |
|||
|
|||
Math::Vec4<u8> primary_color{ |
|||
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255), |
|||
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255), |
|||
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255), |
|||
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255) |
|||
}; |
|||
|
|||
u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 + |
|||
(float)v1.screenpos[2].ToFloat32() * w1 + |
|||
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536?
|
|||
SetDepth(x >> 4, y >> 4, z); |
|||
|
|||
DrawPixel(x >> 4, y >> 4, primary_color); |
|||
} |
|||
} |
|||
} |
|||
|
|||
} // namespace Rasterizer
|
|||
|
|||
} // namespace Pica
|
|||
@ -0,0 +1,21 @@ |
|||
// Copyright 2014 Citra Emulator Project |
|||
// Licensed under GPLv2 |
|||
// Refer to the license.txt file included. |
|||
|
|||
#pragma once |
|||
|
|||
namespace Pica { |
|||
|
|||
namespace VertexShader { |
|||
struct OutputVertex; |
|||
} |
|||
|
|||
namespace Rasterizer { |
|||
|
|||
void ProcessTriangle(const VertexShader::OutputVertex& v0, |
|||
const VertexShader::OutputVertex& v1, |
|||
const VertexShader::OutputVertex& v2); |
|||
|
|||
} // namespace Rasterizer |
|||
|
|||
} // namespace Pica |
|||
Write
Preview
Loading…
Cancel
Save
Reference in new issue