3 changed files with 128 additions and 0 deletions
@ -0,0 +1,85 @@ |
|||||
|
// Copyright 2016 Citra Emulator Project
|
||||
|
// Licensed under GPLv2 or any later version
|
||||
|
// Refer to the license.txt file included.
|
||||
|
|
||||
|
#include "audio_core/interpolate.h"
|
||||
|
|
||||
|
#include "common/assert.h"
|
||||
|
#include "common/math_util.h"
|
||||
|
|
||||
|
namespace AudioInterp { |
||||
|
|
||||
|
// Calculations are done in fixed point with 24 fractional bits.
|
||||
|
// (This is not verified. This was chosen for minimal error.)
|
||||
|
constexpr u64 scale_factor = 1 << 24; |
||||
|
constexpr u64 scale_mask = scale_factor - 1; |
||||
|
|
||||
|
/// Here we step over the input in steps of rate_multiplier, until we consume all of the input.
|
||||
|
/// Three adjacent samples are passed to fn each step.
|
||||
|
template <typename Function> |
||||
|
static StereoBuffer16 StepOverSamples(State& state, const StereoBuffer16& input, float rate_multiplier, Function fn) { |
||||
|
ASSERT(rate_multiplier > 0); |
||||
|
|
||||
|
if (input.size() < 2) |
||||
|
return {}; |
||||
|
|
||||
|
StereoBuffer16 output; |
||||
|
output.reserve(static_cast<size_t>(input.size() / rate_multiplier)); |
||||
|
|
||||
|
u64 step_size = static_cast<u64>(rate_multiplier * scale_factor); |
||||
|
|
||||
|
u64 fposition = 0; |
||||
|
const u64 max_fposition = input.size() * scale_factor; |
||||
|
|
||||
|
while (fposition < 1 * scale_factor) { |
||||
|
u64 fraction = fposition & scale_mask; |
||||
|
|
||||
|
output.push_back(fn(fraction, state.xn2, state.xn1, input[0])); |
||||
|
|
||||
|
fposition += step_size; |
||||
|
} |
||||
|
|
||||
|
while (fposition < 2 * scale_factor) { |
||||
|
u64 fraction = fposition & scale_mask; |
||||
|
|
||||
|
output.push_back(fn(fraction, state.xn1, input[0], input[1])); |
||||
|
|
||||
|
fposition += step_size; |
||||
|
} |
||||
|
|
||||
|
while (fposition < max_fposition) { |
||||
|
u64 fraction = fposition & scale_mask; |
||||
|
|
||||
|
size_t index = static_cast<size_t>(fposition / scale_factor); |
||||
|
output.push_back(fn(fraction, input[index - 2], input[index - 1], input[index])); |
||||
|
|
||||
|
fposition += step_size; |
||||
|
} |
||||
|
|
||||
|
state.xn2 = input[input.size() - 2]; |
||||
|
state.xn1 = input[input.size() - 1]; |
||||
|
|
||||
|
return output; |
||||
|
} |
||||
|
|
||||
|
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier) { |
||||
|
return StepOverSamples(state, input, rate_multiplier, [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { |
||||
|
return x0; |
||||
|
}); |
||||
|
} |
||||
|
|
||||
|
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier) { |
||||
|
// Note on accuracy: Some values that this produces are +/- 1 from the actual firmware.
|
||||
|
return StepOverSamples(state, input, rate_multiplier, [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { |
||||
|
// This is a saturated subtraction. (Verified by black-box fuzzing.)
|
||||
|
s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767); |
||||
|
s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767); |
||||
|
|
||||
|
return std::array<s16, 2> { |
||||
|
static_cast<s16>(x0[0] + fraction * delta0 / scale_factor), |
||||
|
static_cast<s16>(x0[1] + fraction * delta1 / scale_factor) |
||||
|
}; |
||||
|
}); |
||||
|
} |
||||
|
|
||||
|
} // namespace AudioInterp
|
||||
@ -0,0 +1,41 @@ |
|||||
|
// Copyright 2016 Citra Emulator Project |
||||
|
// Licensed under GPLv2 or any later version |
||||
|
// Refer to the license.txt file included. |
||||
|
|
||||
|
#pragma once |
||||
|
|
||||
|
#include <array> |
||||
|
#include <vector> |
||||
|
|
||||
|
#include "common/common_types.h" |
||||
|
|
||||
|
namespace AudioInterp { |
||||
|
|
||||
|
/// A variable length buffer of signed PCM16 stereo samples. |
||||
|
using StereoBuffer16 = std::vector<std::array<s16, 2>>; |
||||
|
|
||||
|
struct State { |
||||
|
// Two historical samples. |
||||
|
std::array<s16, 2> xn1 = {}; ///< x[n-1] |
||||
|
std::array<s16, 2> xn2 = {}; ///< x[n-2] |
||||
|
}; |
||||
|
|
||||
|
/** |
||||
|
* No interpolation. This is equivalent to a zero-order hold. There is a two-sample predelay. |
||||
|
* @param input Input buffer. |
||||
|
* @param rate_multiplier Stretch factor. Must be a positive non-zero value. |
||||
|
* rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 performs upsampling. |
||||
|
* @return The resampled audio buffer. |
||||
|
*/ |
||||
|
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier); |
||||
|
|
||||
|
/** |
||||
|
* Linear interpolation. This is equivalent to a first-order hold. There is a two-sample predelay. |
||||
|
* @param input Input buffer. |
||||
|
* @param rate_multiplier Stretch factor. Must be a positive non-zero value. |
||||
|
* rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 performs upsampling. |
||||
|
* @return The resampled audio buffer. |
||||
|
*/ |
||||
|
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier); |
||||
|
|
||||
|
} // namespace AudioInterp |
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue