|
|
|
@ -32,6 +32,7 @@ struct CoreTiming::Event { |
|
|
|
std::uintptr_t user_data; |
|
|
|
std::weak_ptr<EventType> type; |
|
|
|
s64 reschedule_time; |
|
|
|
heap_t::handle_type handle{}; |
|
|
|
|
|
|
|
// Sort by time, unless the times are the same, in which case sort by
|
|
|
|
// the order added to the queue
|
|
|
|
@ -122,9 +123,9 @@ void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future, |
|
|
|
std::scoped_lock scope{basic_lock}; |
|
|
|
const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future}; |
|
|
|
|
|
|
|
event_queue.emplace_back( |
|
|
|
Event{next_time.count(), event_fifo_id++, user_data, event_type, 0}); |
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
|
|
|
auto h{event_queue.emplace( |
|
|
|
Event{next_time.count(), event_fifo_id++, user_data, event_type, 0})}; |
|
|
|
(*h).handle = h; |
|
|
|
} |
|
|
|
|
|
|
|
event.Set(); |
|
|
|
@ -138,10 +139,9 @@ void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time, |
|
|
|
std::scoped_lock scope{basic_lock}; |
|
|
|
const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time}; |
|
|
|
|
|
|
|
event_queue.emplace_back( |
|
|
|
Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()}); |
|
|
|
|
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
|
|
|
auto h{event_queue.emplace(Event{next_time.count(), event_fifo_id++, user_data, event_type, |
|
|
|
resched_time.count()})}; |
|
|
|
(*h).handle = h; |
|
|
|
} |
|
|
|
|
|
|
|
event.Set(); |
|
|
|
@ -151,15 +151,17 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, |
|
|
|
std::uintptr_t user_data, bool wait) { |
|
|
|
{ |
|
|
|
std::scoped_lock lk{basic_lock}; |
|
|
|
const auto itr = |
|
|
|
std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { |
|
|
|
return e.type.lock().get() == event_type.get() && e.user_data == user_data; |
|
|
|
}); |
|
|
|
|
|
|
|
// Removing random items breaks the invariant so we have to re-establish it.
|
|
|
|
if (itr != event_queue.end()) { |
|
|
|
event_queue.erase(itr, event_queue.end()); |
|
|
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
|
|
|
std::vector<heap_t::handle_type> to_remove; |
|
|
|
for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) { |
|
|
|
const Event& e = *itr; |
|
|
|
if (e.type.lock().get() == event_type.get() && e.user_data == user_data) { |
|
|
|
to_remove.push_back(itr->handle); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
for (auto h : to_remove) { |
|
|
|
event_queue.erase(h); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
@ -200,12 +202,24 @@ std::optional<s64> CoreTiming::Advance() { |
|
|
|
std::scoped_lock lock{advance_lock, basic_lock}; |
|
|
|
global_timer = GetGlobalTimeNs().count(); |
|
|
|
|
|
|
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) { |
|
|
|
Event evt = std::move(event_queue.front()); |
|
|
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
|
|
|
event_queue.pop_back(); |
|
|
|
while (!event_queue.empty() && event_queue.top().time <= global_timer) { |
|
|
|
const Event& evt = event_queue.top(); |
|
|
|
|
|
|
|
if (const auto event_type{evt.type.lock()}) { |
|
|
|
if (evt.reschedule_time == 0) { |
|
|
|
const auto evt_user_data = evt.user_data; |
|
|
|
const auto evt_time = evt.time; |
|
|
|
|
|
|
|
event_queue.pop(); |
|
|
|
|
|
|
|
basic_lock.unlock(); |
|
|
|
|
|
|
|
event_type->callback( |
|
|
|
evt_user_data, evt_time, |
|
|
|
std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time}); |
|
|
|
|
|
|
|
basic_lock.lock(); |
|
|
|
} else { |
|
|
|
basic_lock.unlock(); |
|
|
|
|
|
|
|
const auto new_schedule_time{event_type->callback( |
|
|
|
@ -214,21 +228,19 @@ std::optional<s64> CoreTiming::Advance() { |
|
|
|
|
|
|
|
basic_lock.lock(); |
|
|
|
|
|
|
|
if (evt.reschedule_time != 0) { |
|
|
|
const auto next_schedule_time{new_schedule_time.has_value() |
|
|
|
? new_schedule_time.value().count() |
|
|
|
: evt.reschedule_time}; |
|
|
|
|
|
|
|
// If this event was scheduled into a pause, its time now is going to be way behind.
|
|
|
|
// Re-set this event to continue from the end of the pause.
|
|
|
|
// If this event was scheduled into a pause, its time now is going to be way
|
|
|
|
// behind. Re-set this event to continue from the end of the pause.
|
|
|
|
auto next_time{evt.time + next_schedule_time}; |
|
|
|
if (evt.time < pause_end_time) { |
|
|
|
next_time = pause_end_time + next_schedule_time; |
|
|
|
} |
|
|
|
|
|
|
|
event_queue.emplace_back( |
|
|
|
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time}); |
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
|
|
|
event_queue.update(evt.handle, Event{next_time, event_fifo_id++, evt.user_data, |
|
|
|
evt.type, next_schedule_time, evt.handle}); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
@ -236,7 +248,7 @@ std::optional<s64> CoreTiming::Advance() { |
|
|
|
} |
|
|
|
|
|
|
|
if (!event_queue.empty()) { |
|
|
|
return event_queue.front().time; |
|
|
|
return event_queue.top().time; |
|
|
|
} else { |
|
|
|
return std::nullopt; |
|
|
|
} |
|
|
|
@ -274,7 +286,8 @@ void CoreTiming::ThreadLoop() { |
|
|
|
#endif
|
|
|
|
} |
|
|
|
} else { |
|
|
|
// Queue is empty, wait until another event is scheduled and signals us to continue.
|
|
|
|
// Queue is empty, wait until another event is scheduled and signals us to
|
|
|
|
// continue.
|
|
|
|
wait_set = true; |
|
|
|
event.Wait(); |
|
|
|
} |
|
|
|
|