|
|
|
@ -37,18 +37,25 @@ void MotionInput::ResetRotations() { |
|
|
|
} |
|
|
|
|
|
|
|
bool MotionInput::IsMoving(f32 sensitivity) const { |
|
|
|
return gyro.Length2() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f; |
|
|
|
return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f; |
|
|
|
} |
|
|
|
|
|
|
|
bool MotionInput::IsCalibrated(f32 sensitivity) const { |
|
|
|
return real_error.Length() > sensitivity; |
|
|
|
return real_error.Length() < sensitivity; |
|
|
|
} |
|
|
|
|
|
|
|
void MotionInput::UpdateRotation(u64 elapsed_time) { |
|
|
|
rotations += gyro * elapsed_time; |
|
|
|
const f32 sample_period = elapsed_time / 1000000.0f; |
|
|
|
if (sample_period > 0.1f) { |
|
|
|
return; |
|
|
|
} |
|
|
|
rotations += gyro * sample_period; |
|
|
|
} |
|
|
|
|
|
|
|
void MotionInput::UpdateOrientation(u64 elapsed_time) { |
|
|
|
if (!IsCalibrated(0.1f)) { |
|
|
|
ResetOrientation(); |
|
|
|
} |
|
|
|
// Short name local variable for readability
|
|
|
|
f32 q1 = quat.w; |
|
|
|
f32 q2 = quat.xyz[0]; |
|
|
|
@ -56,12 +63,20 @@ void MotionInput::UpdateOrientation(u64 elapsed_time) { |
|
|
|
f32 q4 = quat.xyz[2]; |
|
|
|
const f32 sample_period = elapsed_time / 1000000.0f; |
|
|
|
|
|
|
|
// ignore invalid elapsed time
|
|
|
|
if (sample_period > 0.1f) { |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
const auto normal_accel = accel.Normalized(); |
|
|
|
auto rad_gyro = gyro * 3.1415926535f; |
|
|
|
auto rad_gyro = gyro * 3.1415926535f * 2; |
|
|
|
const f32 swap = rad_gyro.x; |
|
|
|
rad_gyro.x = rad_gyro.y; |
|
|
|
rad_gyro.y = -swap; |
|
|
|
rad_gyro.z = -rad_gyro.z; |
|
|
|
|
|
|
|
// Ignore drift correction if acceleration is not present
|
|
|
|
if (normal_accel.Length() == 1.0f) { |
|
|
|
// Ignore drift correction if acceleration is not reliable
|
|
|
|
if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) { |
|
|
|
const f32 ax = -normal_accel.x; |
|
|
|
const f32 ay = normal_accel.y; |
|
|
|
const f32 az = -normal_accel.z; |
|
|
|
@ -72,14 +87,14 @@ void MotionInput::UpdateOrientation(u64 elapsed_time) { |
|
|
|
const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4; |
|
|
|
|
|
|
|
// Error is cross product between estimated direction and measured direction of gravity
|
|
|
|
const Common::Vec3f new_real_error = {ay * vz - az * vy, az * vx - ax * vz, |
|
|
|
const Common::Vec3f new_real_error = {az * vx - ax * vz, ay * vz - az * vy, |
|
|
|
ax * vy - ay * vx}; |
|
|
|
|
|
|
|
derivative_error = new_real_error - real_error; |
|
|
|
real_error = new_real_error; |
|
|
|
|
|
|
|
// Prevent integral windup
|
|
|
|
if (ki != 0.0f) { |
|
|
|
if (ki != 0.0f && !IsCalibrated(0.05f)) { |
|
|
|
integral_error += real_error; |
|
|
|
} else { |
|
|
|
integral_error = {}; |
|
|
|
@ -112,13 +127,15 @@ void MotionInput::UpdateOrientation(u64 elapsed_time) { |
|
|
|
} |
|
|
|
|
|
|
|
std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const { |
|
|
|
const Common::Quaternion<float> quad{.xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w}, |
|
|
|
.w = -quat.xyz[2]}; |
|
|
|
const Common::Quaternion<float> quad{ |
|
|
|
.xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w}, |
|
|
|
.w = -quat.xyz[2], |
|
|
|
}; |
|
|
|
const std::array<float, 16> matrix4x4 = quad.ToMatrix(); |
|
|
|
|
|
|
|
return {Common::Vec3f(matrix4x4[0], matrix4x4[1], matrix4x4[2]), |
|
|
|
Common::Vec3f(matrix4x4[4], matrix4x4[5], matrix4x4[6]), |
|
|
|
Common::Vec3f(matrix4x4[8], matrix4x4[9], matrix4x4[10])}; |
|
|
|
return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]), |
|
|
|
Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]), |
|
|
|
Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])}; |
|
|
|
} |
|
|
|
|
|
|
|
Common::Vec3f MotionInput::GetAcceleration() const { |
|
|
|
|