|
|
|
@ -30,6 +30,58 @@ namespace Pica { |
|
|
|
|
|
|
|
namespace Shader { |
|
|
|
|
|
|
|
OutputVertex OutputRegisters::ToVertex(const Regs::ShaderConfig& config) { |
|
|
|
// Setup output data
|
|
|
|
OutputVertex ret; |
|
|
|
// TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
|
|
|
|
// figure out what those circumstances are and enable the remaining outputs then.
|
|
|
|
unsigned index = 0; |
|
|
|
for (unsigned i = 0; i < 7; ++i) { |
|
|
|
|
|
|
|
if (index >= g_state.regs.vs_output_total) |
|
|
|
break; |
|
|
|
|
|
|
|
if ((config.output_mask & (1 << i)) == 0) |
|
|
|
continue; |
|
|
|
|
|
|
|
const auto& output_register_map = g_state.regs.vs_output_attributes[index]; |
|
|
|
|
|
|
|
u32 semantics[4] = { |
|
|
|
output_register_map.map_x, output_register_map.map_y, |
|
|
|
output_register_map.map_z, output_register_map.map_w |
|
|
|
}; |
|
|
|
|
|
|
|
for (unsigned comp = 0; comp < 4; ++comp) { |
|
|
|
float24* out = ((float24*)&ret) + semantics[comp]; |
|
|
|
if (semantics[comp] != Regs::VSOutputAttributes::INVALID) { |
|
|
|
*out = value[i][comp]; |
|
|
|
} else { |
|
|
|
// Zero output so that attributes which aren't output won't have denormals in them,
|
|
|
|
// which would slow us down later.
|
|
|
|
memset(out, 0, sizeof(*out)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
index++; |
|
|
|
} |
|
|
|
|
|
|
|
// The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation
|
|
|
|
for (unsigned i = 0; i < 4; ++i) { |
|
|
|
ret.color[i] = float24::FromFloat32( |
|
|
|
std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f)); |
|
|
|
} |
|
|
|
|
|
|
|
LOG_TRACE(HW_GPU, "Output vertex: pos(%.2f, %.2f, %.2f, %.2f), quat(%.2f, %.2f, %.2f, %.2f), " |
|
|
|
"col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f), view(%.2f, %.2f, %.2f)", |
|
|
|
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(), |
|
|
|
ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(), ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(), |
|
|
|
ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(), |
|
|
|
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(), |
|
|
|
ret.view.x.ToFloat32(), ret.view.y.ToFloat32(), ret.view.z.ToFloat32()); |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef ARCHITECTURE_x86_64
|
|
|
|
static std::unordered_map<u64, std::unique_ptr<JitShader>> shader_map; |
|
|
|
static const JitShader* jit_shader; |
|
|
|
@ -62,7 +114,7 @@ void ShaderSetup::Setup() { |
|
|
|
|
|
|
|
MICROPROFILE_DEFINE(GPU_Shader, "GPU", "Shader", MP_RGB(50, 50, 240)); |
|
|
|
|
|
|
|
OutputVertex ShaderSetup::Run(UnitState<false>& state, const InputVertex& input, int num_attributes) { |
|
|
|
void ShaderSetup::Run(UnitState<false>& state, const InputVertex& input, int num_attributes) { |
|
|
|
auto& config = g_state.regs.vs; |
|
|
|
auto& setup = g_state.vs; |
|
|
|
|
|
|
|
@ -89,55 +141,6 @@ OutputVertex ShaderSetup::Run(UnitState<false>& state, const InputVertex& input, |
|
|
|
RunInterpreter(setup, state, config.main_offset); |
|
|
|
#endif // ARCHITECTURE_x86_64
|
|
|
|
|
|
|
|
// Setup output data
|
|
|
|
OutputVertex ret; |
|
|
|
// TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
|
|
|
|
// figure out what those circumstances are and enable the remaining outputs then.
|
|
|
|
unsigned index = 0; |
|
|
|
for (unsigned i = 0; i < 7; ++i) { |
|
|
|
|
|
|
|
if (index >= g_state.regs.vs_output_total) |
|
|
|
break; |
|
|
|
|
|
|
|
if ((g_state.regs.vs.output_mask & (1 << i)) == 0) |
|
|
|
continue; |
|
|
|
|
|
|
|
const auto& output_register_map = g_state.regs.vs_output_attributes[index]; // TODO: Don't hardcode VS here
|
|
|
|
|
|
|
|
u32 semantics[4] = { |
|
|
|
output_register_map.map_x, output_register_map.map_y, |
|
|
|
output_register_map.map_z, output_register_map.map_w |
|
|
|
}; |
|
|
|
|
|
|
|
for (unsigned comp = 0; comp < 4; ++comp) { |
|
|
|
float24* out = ((float24*)&ret) + semantics[comp]; |
|
|
|
if (semantics[comp] != Regs::VSOutputAttributes::INVALID) { |
|
|
|
*out = state.registers.output[i][comp]; |
|
|
|
} else { |
|
|
|
// Zero output so that attributes which aren't output won't have denormals in them,
|
|
|
|
// which would slow us down later.
|
|
|
|
memset(out, 0, sizeof(*out)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
index++; |
|
|
|
} |
|
|
|
|
|
|
|
// The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation
|
|
|
|
for (unsigned i = 0; i < 4; ++i) { |
|
|
|
ret.color[i] = float24::FromFloat32( |
|
|
|
std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f)); |
|
|
|
} |
|
|
|
|
|
|
|
LOG_TRACE(HW_GPU, "Output vertex: pos(%.2f, %.2f, %.2f, %.2f), quat(%.2f, %.2f, %.2f, %.2f), " |
|
|
|
"col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f), view(%.2f, %.2f, %.2f)", |
|
|
|
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(), |
|
|
|
ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(), ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(), |
|
|
|
ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(), |
|
|
|
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(), |
|
|
|
ret.view.x.ToFloat32(), ret.view.y.ToFloat32(), ret.view.z.ToFloat32()); |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
DebugData<true> ShaderSetup::ProduceDebugInfo(const InputVertex& input, int num_attributes, const Regs::ShaderConfig& config, const ShaderSetup& setup) { |
|
|
|
|