|
|
|
@ -45,62 +45,51 @@ |
|
|
|
|
|
|
|
#define do_div(n, base) {n/=base;} |
|
|
|
|
|
|
|
/* From vfpinstr.h */ |
|
|
|
|
|
|
|
#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000) |
|
|
|
#define INST_CPRT(inst) ((inst) & (1 << 4)) |
|
|
|
#define INST_CPRT_L(inst) ((inst) & (1 << 20)) |
|
|
|
#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12) |
|
|
|
#define INST_CPRT_OP(inst) (((inst) >> 21) & 7) |
|
|
|
#define INST_CPNUM(inst) ((inst) & 0xf00) |
|
|
|
#define CPNUM(cp) ((cp) << 8) |
|
|
|
|
|
|
|
#define FOP_MASK (0x00b00040) |
|
|
|
#define FOP_FMAC (0x00000000) |
|
|
|
#define FOP_FNMAC (0x00000040) |
|
|
|
#define FOP_FMSC (0x00100000) |
|
|
|
#define FOP_FNMSC (0x00100040) |
|
|
|
#define FOP_FMUL (0x00200000) |
|
|
|
#define FOP_FNMUL (0x00200040) |
|
|
|
#define FOP_FADD (0x00300000) |
|
|
|
#define FOP_FSUB (0x00300040) |
|
|
|
#define FOP_FDIV (0x00800000) |
|
|
|
#define FOP_EXT (0x00b00040) |
|
|
|
|
|
|
|
#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) |
|
|
|
|
|
|
|
#define FEXT_MASK (0x000f0080) |
|
|
|
#define FEXT_FCPY (0x00000000) |
|
|
|
#define FEXT_FABS (0x00000080) |
|
|
|
#define FEXT_FNEG (0x00010000) |
|
|
|
#define FEXT_FSQRT (0x00010080) |
|
|
|
#define FEXT_FCMP (0x00040000) |
|
|
|
#define FEXT_FCMPE (0x00040080) |
|
|
|
#define FEXT_FCMPZ (0x00050000) |
|
|
|
#define FEXT_FCMPEZ (0x00050080) |
|
|
|
#define FEXT_FCVT (0x00070080) |
|
|
|
#define FEXT_FUITO (0x00080000) |
|
|
|
#define FEXT_FSITO (0x00080080) |
|
|
|
#define FEXT_FTOUI (0x000c0000) |
|
|
|
#define FEXT_FTOUIZ (0x000c0080) |
|
|
|
#define FEXT_FTOSI (0x000d0000) |
|
|
|
#define FEXT_FTOSIZ (0x000d0080) |
|
|
|
|
|
|
|
#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) |
|
|
|
|
|
|
|
#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) |
|
|
|
#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) |
|
|
|
#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) |
|
|
|
#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) |
|
|
|
#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) |
|
|
|
#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) |
|
|
|
|
|
|
|
#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) |
|
|
|
|
|
|
|
#define FPSCR_N (1 << 31) |
|
|
|
#define FPSCR_Z (1 << 30) |
|
|
|
#define FPSCR_C (1 << 29) |
|
|
|
#define FPSCR_V (1 << 28) |
|
|
|
enum : u32 { |
|
|
|
FOP_MASK = 0x00b00040, |
|
|
|
FOP_FMAC = 0x00000000, |
|
|
|
FOP_FNMAC = 0x00000040, |
|
|
|
FOP_FMSC = 0x00100000, |
|
|
|
FOP_FNMSC = 0x00100040, |
|
|
|
FOP_FMUL = 0x00200000, |
|
|
|
FOP_FNMUL = 0x00200040, |
|
|
|
FOP_FADD = 0x00300000, |
|
|
|
FOP_FSUB = 0x00300040, |
|
|
|
FOP_FDIV = 0x00800000, |
|
|
|
FOP_EXT = 0x00b00040 |
|
|
|
}; |
|
|
|
|
|
|
|
#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) |
|
|
|
|
|
|
|
enum : u32 { |
|
|
|
FEXT_MASK = 0x000f0080, |
|
|
|
FEXT_FCPY = 0x00000000, |
|
|
|
FEXT_FABS = 0x00000080, |
|
|
|
FEXT_FNEG = 0x00010000, |
|
|
|
FEXT_FSQRT = 0x00010080, |
|
|
|
FEXT_FCMP = 0x00040000, |
|
|
|
FEXT_FCMPE = 0x00040080, |
|
|
|
FEXT_FCMPZ = 0x00050000, |
|
|
|
FEXT_FCMPEZ = 0x00050080, |
|
|
|
FEXT_FCVT = 0x00070080, |
|
|
|
FEXT_FUITO = 0x00080000, |
|
|
|
FEXT_FSITO = 0x00080080, |
|
|
|
FEXT_FTOUI = 0x000c0000, |
|
|
|
FEXT_FTOUIZ = 0x000c0080, |
|
|
|
FEXT_FTOSI = 0x000d0000, |
|
|
|
FEXT_FTOSIZ = 0x000d0080 |
|
|
|
}; |
|
|
|
|
|
|
|
#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) |
|
|
|
|
|
|
|
#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) |
|
|
|
#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) |
|
|
|
#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) |
|
|
|
#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) |
|
|
|
#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) |
|
|
|
#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) |
|
|
|
|
|
|
|
#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) |
|
|
|
|
|
|
|
static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) |
|
|
|
{ |
|
|
|
@ -225,51 +214,39 @@ static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) |
|
|
|
return z; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Operations on unpacked elements |
|
|
|
*/ |
|
|
|
#define vfp_sign_negate(sign) (sign ^ 0x8000) |
|
|
|
// Operations on unpacked elements |
|
|
|
#define vfp_sign_negate(sign) (sign ^ 0x8000) |
|
|
|
|
|
|
|
/* |
|
|
|
* Single-precision |
|
|
|
*/ |
|
|
|
// Single-precision |
|
|
|
struct vfp_single { |
|
|
|
s16 exponent; |
|
|
|
u16 sign; |
|
|
|
u32 significand; |
|
|
|
}; |
|
|
|
|
|
|
|
/* |
|
|
|
* VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa |
|
|
|
* VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent |
|
|
|
* VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand |
|
|
|
* which are not propagated to the float upon packing. |
|
|
|
*/ |
|
|
|
#define VFP_SINGLE_MANTISSA_BITS (23) |
|
|
|
#define VFP_SINGLE_EXPONENT_BITS (8) |
|
|
|
#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) |
|
|
|
#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) |
|
|
|
// VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa |
|
|
|
// VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent |
|
|
|
// VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand |
|
|
|
// which are not propagated to the float upon packing. |
|
|
|
#define VFP_SINGLE_MANTISSA_BITS (23) |
|
|
|
#define VFP_SINGLE_EXPONENT_BITS (8) |
|
|
|
#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) |
|
|
|
#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) |
|
|
|
|
|
|
|
/* |
|
|
|
* The bit in an unpacked float which indicates that it is a quiet NaN |
|
|
|
*/ |
|
|
|
// The bit in an unpacked float which indicates that it is a quiet NaN |
|
|
|
#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Operations on packed single-precision numbers |
|
|
|
*/ |
|
|
|
#define vfp_single_packed_sign(v) ((v) & 0x80000000) |
|
|
|
#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) |
|
|
|
#define vfp_single_packed_abs(v) ((v) & ~0x80000000) |
|
|
|
#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) |
|
|
|
#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Unpack a single-precision float. Note that this returns the magnitude |
|
|
|
* of the single-precision float mantissa with the 1. if necessary, |
|
|
|
* aligned to bit 30. |
|
|
|
*/ |
|
|
|
static inline void vfp_single_unpack(struct vfp_single *s, s32 val) |
|
|
|
// Operations on packed single-precision numbers |
|
|
|
#define vfp_single_packed_sign(v) ((v) & 0x80000000) |
|
|
|
#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) |
|
|
|
#define vfp_single_packed_abs(v) ((v) & ~0x80000000) |
|
|
|
#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) |
|
|
|
#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) |
|
|
|
|
|
|
|
// Unpack a single-precision float. Note that this returns the magnitude |
|
|
|
// of the single-precision float mantissa with the 1. if necessary, |
|
|
|
// aligned to bit 30. |
|
|
|
static inline void vfp_single_unpack(vfp_single* s, s32 val) |
|
|
|
{ |
|
|
|
u32 significand; |
|
|
|
|
|
|
|
@ -283,11 +260,9 @@ static inline void vfp_single_unpack(struct vfp_single *s, s32 val) |
|
|
|
s->significand = significand; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Re-pack a single-precision float. This assumes that the float is |
|
|
|
* already normalised such that the MSB is bit 30, _not_ bit 31. |
|
|
|
*/ |
|
|
|
static inline s32 vfp_single_pack(struct vfp_single *s) |
|
|
|
// Re-pack a single-precision float. This assumes that the float is |
|
|
|
// already normalised such that the MSB is bit 30, _not_ bit 31. |
|
|
|
static inline s32 vfp_single_pack(vfp_single* s) |
|
|
|
{ |
|
|
|
u32 val = (s->sign << 16) + |
|
|
|
(s->exponent << VFP_SINGLE_MANTISSA_BITS) + |
|
|
|
@ -295,17 +270,19 @@ static inline s32 vfp_single_pack(struct vfp_single *s) |
|
|
|
return (s32)val; |
|
|
|
} |
|
|
|
|
|
|
|
#define VFP_NUMBER (1<<0) |
|
|
|
#define VFP_ZERO (1<<1) |
|
|
|
#define VFP_DENORMAL (1<<2) |
|
|
|
#define VFP_INFINITY (1<<3) |
|
|
|
#define VFP_NAN (1<<4) |
|
|
|
#define VFP_NAN_SIGNAL (1<<5) |
|
|
|
enum : u32 { |
|
|
|
VFP_NUMBER = (1 << 0), |
|
|
|
VFP_ZERO = (1 << 1), |
|
|
|
VFP_DENORMAL = (1 << 2), |
|
|
|
VFP_INFINITY = (1 << 3), |
|
|
|
VFP_NAN = (1 << 4), |
|
|
|
VFP_NAN_SIGNAL = (1 << 5), |
|
|
|
|
|
|
|
#define VFP_QNAN (VFP_NAN) |
|
|
|
#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) |
|
|
|
VFP_QNAN = (VFP_NAN), |
|
|
|
VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL) |
|
|
|
}; |
|
|
|
|
|
|
|
static inline int vfp_single_type(struct vfp_single *s) |
|
|
|
static inline int vfp_single_type(vfp_single* s) |
|
|
|
{ |
|
|
|
int type = VFP_NUMBER; |
|
|
|
if (s->exponent == 255) { |
|
|
|
@ -325,53 +302,43 @@ static inline int vfp_single_type(struct vfp_single *s) |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); |
|
|
|
u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func); |
|
|
|
|
|
|
|
/* |
|
|
|
* Double-precision |
|
|
|
*/ |
|
|
|
// Double-precision |
|
|
|
struct vfp_double { |
|
|
|
s16 exponent; |
|
|
|
u16 sign; |
|
|
|
u64 significand; |
|
|
|
}; |
|
|
|
|
|
|
|
/* |
|
|
|
* VFP_REG_ZERO is a special register number for vfp_get_double |
|
|
|
* which returns (double)0.0. This is useful for the compare with |
|
|
|
* zero instructions. |
|
|
|
*/ |
|
|
|
// VFP_REG_ZERO is a special register number for vfp_get_double |
|
|
|
// which returns (double)0.0. This is useful for the compare with |
|
|
|
// zero instructions. |
|
|
|
#ifdef CONFIG_VFPv3 |
|
|
|
#define VFP_REG_ZERO 32 |
|
|
|
#define VFP_REG_ZERO 32 |
|
|
|
#else |
|
|
|
#define VFP_REG_ZERO 16 |
|
|
|
#define VFP_REG_ZERO 16 |
|
|
|
#endif |
|
|
|
|
|
|
|
#define VFP_DOUBLE_MANTISSA_BITS (52) |
|
|
|
#define VFP_DOUBLE_EXPONENT_BITS (11) |
|
|
|
#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) |
|
|
|
#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) |
|
|
|
|
|
|
|
/* |
|
|
|
* The bit in an unpacked double which indicates that it is a quiet NaN |
|
|
|
*/ |
|
|
|
#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Operations on packed single-precision numbers |
|
|
|
*/ |
|
|
|
#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) |
|
|
|
#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) |
|
|
|
#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) |
|
|
|
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) |
|
|
|
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Unpack a double-precision float. Note that this returns the magnitude |
|
|
|
* of the double-precision float mantissa with the 1. if necessary, |
|
|
|
* aligned to bit 62. |
|
|
|
*/ |
|
|
|
static inline void vfp_double_unpack(struct vfp_double *s, s64 val) |
|
|
|
#define VFP_DOUBLE_MANTISSA_BITS (52) |
|
|
|
#define VFP_DOUBLE_EXPONENT_BITS (11) |
|
|
|
#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) |
|
|
|
#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) |
|
|
|
|
|
|
|
// The bit in an unpacked double which indicates that it is a quiet NaN |
|
|
|
#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) |
|
|
|
|
|
|
|
// Operations on packed single-precision numbers |
|
|
|
#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) |
|
|
|
#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) |
|
|
|
#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) |
|
|
|
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) |
|
|
|
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) |
|
|
|
|
|
|
|
// Unpack a double-precision float. Note that this returns the magnitude |
|
|
|
// of the double-precision float mantissa with the 1. if necessary, |
|
|
|
// aligned to bit 62. |
|
|
|
static inline void vfp_double_unpack(vfp_double* s, s64 val) |
|
|
|
{ |
|
|
|
u64 significand; |
|
|
|
|
|
|
|
@ -385,11 +352,9 @@ static inline void vfp_double_unpack(struct vfp_double *s, s64 val) |
|
|
|
s->significand = significand; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Re-pack a double-precision float. This assumes that the float is |
|
|
|
* already normalised such that the MSB is bit 30, _not_ bit 31. |
|
|
|
*/ |
|
|
|
static inline s64 vfp_double_pack(struct vfp_double *s) |
|
|
|
// Re-pack a double-precision float. This assumes that the float is |
|
|
|
// already normalised such that the MSB is bit 30, _not_ bit 31. |
|
|
|
static inline s64 vfp_double_pack(vfp_double* s) |
|
|
|
{ |
|
|
|
u64 val = ((u64)s->sign << 48) + |
|
|
|
((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + |
|
|
|
@ -397,7 +362,7 @@ static inline s64 vfp_double_pack(struct vfp_double *s) |
|
|
|
return (s64)val; |
|
|
|
} |
|
|
|
|
|
|
|
static inline int vfp_double_type(struct vfp_double *s) |
|
|
|
static inline int vfp_double_type(vfp_double* s) |
|
|
|
{ |
|
|
|
int type = VFP_NUMBER; |
|
|
|
if (s->exponent == 2047) { |
|
|
|
@ -416,34 +381,30 @@ static inline int vfp_double_type(struct vfp_double *s) |
|
|
|
return type; |
|
|
|
} |
|
|
|
|
|
|
|
u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); |
|
|
|
u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func); |
|
|
|
|
|
|
|
u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); |
|
|
|
|
|
|
|
/* |
|
|
|
* A special flag to tell the normalisation code not to normalise. |
|
|
|
*/ |
|
|
|
#define VFP_NAN_FLAG 0x100 |
|
|
|
|
|
|
|
/* |
|
|
|
* A bit pattern used to indicate the initial (unset) value of the |
|
|
|
* exception mask, in case nothing handles an instruction. This |
|
|
|
* doesn't include the NAN flag, which get masked out before |
|
|
|
* we check for an error. |
|
|
|
*/ |
|
|
|
#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) |
|
|
|
|
|
|
|
/* |
|
|
|
* A flag to tell vfp instruction type. |
|
|
|
* OP_SCALAR - this operation always operates in scalar mode |
|
|
|
* OP_SD - the instruction exceptionally writes to a single precision result. |
|
|
|
* OP_DD - the instruction exceptionally writes to a double precision result. |
|
|
|
* OP_SM - the instruction exceptionally reads from a single precision operand. |
|
|
|
*/ |
|
|
|
#define OP_SCALAR (1 << 0) |
|
|
|
#define OP_SD (1 << 1) |
|
|
|
#define OP_DD (1 << 1) |
|
|
|
#define OP_SM (1 << 2) |
|
|
|
// A special flag to tell the normalisation code not to normalise. |
|
|
|
#define VFP_NAN_FLAG 0x100 |
|
|
|
|
|
|
|
// A bit pattern used to indicate the initial (unset) value of the |
|
|
|
// exception mask, in case nothing handles an instruction. This |
|
|
|
// doesn't include the NAN flag, which get masked out before |
|
|
|
// we check for an error. |
|
|
|
#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) |
|
|
|
|
|
|
|
// A flag to tell vfp instruction type. |
|
|
|
// OP_SCALAR - This operation always operates in scalar mode |
|
|
|
// OP_SD - The instruction exceptionally writes to a single precision result. |
|
|
|
// OP_DD - The instruction exceptionally writes to a double precision result. |
|
|
|
// OP_SM - The instruction exceptionally reads from a single precision operand. |
|
|
|
enum : u32 { |
|
|
|
OP_SCALAR = (1 << 0), |
|
|
|
OP_SD = (1 << 1), |
|
|
|
OP_DD = (1 << 1), |
|
|
|
OP_SM = (1 << 2) |
|
|
|
}; |
|
|
|
|
|
|
|
struct op { |
|
|
|
u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); |
|
|
|
@ -480,7 +441,7 @@ static inline u32 fls(ARMword x) |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); |
|
|
|
u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); |
|
|
|
u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); |
|
|
|
u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr); |
|
|
|
u32 vfp_double_normaliseroundintern(ARMul_State* state, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func); |
|
|
|
u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr); |
|
|
|
u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr); |
|
|
|
u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, vfp_double* dm, u32 fpscr); |