|
|
|
@ -2,7 +2,7 @@ |
|
|
|
// Licensed under GPLv2 or any later version
|
|
|
|
// Refer to the license.txt file included.
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <boost/container/static_vector.hpp>
|
|
|
|
|
|
|
|
#include "clipper.h"
|
|
|
|
#include "pica.h"
|
|
|
|
@ -91,25 +91,31 @@ static void InitScreenCoordinates(OutputVertex& vtx) |
|
|
|
viewport.zscale = float24::FromRawFloat24(registers.viewport_depth_range); |
|
|
|
viewport.offset_z = float24::FromRawFloat24(registers.viewport_depth_far_plane); |
|
|
|
|
|
|
|
float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w; |
|
|
|
vtx.color *= inv_w; |
|
|
|
vtx.tc0 *= inv_w; |
|
|
|
vtx.tc1 *= inv_w; |
|
|
|
vtx.tc2 *= inv_w; |
|
|
|
vtx.pos.w = inv_w; |
|
|
|
|
|
|
|
// TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not
|
|
|
|
vtx.screenpos[0] = (vtx.pos.x / vtx.pos.w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; |
|
|
|
vtx.screenpos[1] = (vtx.pos.y / vtx.pos.w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; |
|
|
|
vtx.screenpos[2] = viewport.offset_z - vtx.pos.z / vtx.pos.w * viewport.zscale; |
|
|
|
vtx.screenpos[0] = (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; |
|
|
|
vtx.screenpos[1] = (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; |
|
|
|
vtx.screenpos[2] = viewport.offset_z - vtx.pos.z * inv_w * viewport.zscale; |
|
|
|
} |
|
|
|
|
|
|
|
void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { |
|
|
|
|
|
|
|
// TODO (neobrain):
|
|
|
|
// The list of output vertices has some fixed maximum size,
|
|
|
|
// however I haven't taken the time to figure out what it is exactly.
|
|
|
|
// For now, we hence just assume a maximal size of 1000 vertices.
|
|
|
|
const size_t max_vertices = 1000; |
|
|
|
std::vector<OutputVertex> buffer_vertices; |
|
|
|
std::vector<OutputVertex*> output_list{ &v0, &v1, &v2 }; |
|
|
|
|
|
|
|
// Make sure to reserve space for all vertices.
|
|
|
|
// Without this, buffer reallocation would invalidate references.
|
|
|
|
buffer_vertices.reserve(max_vertices); |
|
|
|
using boost::container::static_vector; |
|
|
|
|
|
|
|
// Clipping a planar n-gon against a plane will remove at least 1 vertex and introduces 2 at
|
|
|
|
// the new edge (or less in degenerate cases). As such, we can say that each clipping plane
|
|
|
|
// introduces at most 1 new vertex to the polygon. Since we start with a triangle and have a
|
|
|
|
// fixed 6 clipping planes, the maximum number of vertices of the clipped polygon is 3 + 6 = 9.
|
|
|
|
static const size_t MAX_VERTICES = 9; |
|
|
|
static_vector<OutputVertex, MAX_VERTICES> buffer_a = { v0, v1, v2 }; |
|
|
|
static_vector<OutputVertex, MAX_VERTICES> buffer_b; |
|
|
|
auto* output_list = &buffer_a; |
|
|
|
auto* input_list = &buffer_b; |
|
|
|
|
|
|
|
// Simple implementation of the Sutherland-Hodgman clipping algorithm.
|
|
|
|
// TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
|
|
|
|
@ -120,48 +126,45 @@ void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { |
|
|
|
ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)), |
|
|
|
ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) { |
|
|
|
|
|
|
|
const std::vector<OutputVertex*> input_list = output_list; |
|
|
|
output_list.clear(); |
|
|
|
std::swap(input_list, output_list); |
|
|
|
output_list->clear(); |
|
|
|
|
|
|
|
const OutputVertex* reference_vertex = input_list.back(); |
|
|
|
const OutputVertex* reference_vertex = &input_list->back(); |
|
|
|
|
|
|
|
for (const auto& vertex : input_list) { |
|
|
|
for (const auto& vertex : *input_list) { |
|
|
|
// NOTE: This algorithm changes vertex order in some cases!
|
|
|
|
if (edge.IsInside(*vertex)) { |
|
|
|
if (edge.IsInside(vertex)) { |
|
|
|
if (edge.IsOutSide(*reference_vertex)) { |
|
|
|
buffer_vertices.push_back(edge.GetIntersection(*vertex, *reference_vertex)); |
|
|
|
output_list.push_back(&(buffer_vertices.back())); |
|
|
|
output_list->push_back(edge.GetIntersection(vertex, *reference_vertex)); |
|
|
|
} |
|
|
|
|
|
|
|
output_list.push_back(vertex); |
|
|
|
output_list->push_back(vertex); |
|
|
|
} else if (edge.IsInside(*reference_vertex)) { |
|
|
|
buffer_vertices.push_back(edge.GetIntersection(*vertex, *reference_vertex)); |
|
|
|
output_list.push_back(&(buffer_vertices.back())); |
|
|
|
output_list->push_back(edge.GetIntersection(vertex, *reference_vertex)); |
|
|
|
} |
|
|
|
|
|
|
|
reference_vertex = vertex; |
|
|
|
reference_vertex = &vertex; |
|
|
|
} |
|
|
|
|
|
|
|
// Need to have at least a full triangle to continue...
|
|
|
|
if (output_list.size() < 3) |
|
|
|
if (output_list->size() < 3) |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
InitScreenCoordinates(*(output_list[0])); |
|
|
|
InitScreenCoordinates(*(output_list[1])); |
|
|
|
InitScreenCoordinates((*output_list)[0]); |
|
|
|
InitScreenCoordinates((*output_list)[1]); |
|
|
|
|
|
|
|
for (size_t i = 0; i < output_list.size() - 2; i ++) { |
|
|
|
OutputVertex& vtx0 = *(output_list[0]); |
|
|
|
OutputVertex& vtx1 = *(output_list[i+1]); |
|
|
|
OutputVertex& vtx2 = *(output_list[i+2]); |
|
|
|
for (size_t i = 0; i < output_list->size() - 2; i ++) { |
|
|
|
OutputVertex& vtx0 = (*output_list)[0]; |
|
|
|
OutputVertex& vtx1 = (*output_list)[i+1]; |
|
|
|
OutputVertex& vtx2 = (*output_list)[i+2]; |
|
|
|
|
|
|
|
InitScreenCoordinates(vtx2); |
|
|
|
|
|
|
|
LOG_TRACE(Render_Software, |
|
|
|
"Triangle %lu/%lu (%lu buffer vertices) at position (%.3f, %.3f, %.3f, %.3f), " |
|
|
|
"Triangle %lu/%lu at position (%.3f, %.3f, %.3f, %.3f), " |
|
|
|
"(%.3f, %.3f, %.3f, %.3f), (%.3f, %.3f, %.3f, %.3f) and " |
|
|
|
"screen position (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f)", |
|
|
|
i,output_list.size(), buffer_vertices.size(), |
|
|
|
i, output_list->size(), |
|
|
|
vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(), vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), |
|
|
|
vtx1.pos.x.ToFloat32(), vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(), |
|
|
|
vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(), vtx2.pos.w.ToFloat32(), |
|
|
|
|