|
|
|
@ -2,7 +2,6 @@ |
|
|
|
// Licensed under GPLv2 or any later version
|
|
|
|
// Refer to the license.txt file included.
|
|
|
|
|
|
|
|
#include <chrono>
|
|
|
|
#include <condition_variable>
|
|
|
|
#include <mutex>
|
|
|
|
#include <thread>
|
|
|
|
@ -20,9 +19,18 @@ AsyncShaders::~AsyncShaders() { |
|
|
|
KillWorkers(); |
|
|
|
} |
|
|
|
|
|
|
|
void AsyncShaders::AllocateWorkers(std::size_t num_workers) { |
|
|
|
// If we're already have workers queued or don't want to queue workers, ignore
|
|
|
|
if (num_workers == worker_threads.size() || num_workers == 0) { |
|
|
|
void AsyncShaders::AllocateWorkers() { |
|
|
|
// Max worker threads we should allow
|
|
|
|
constexpr u32 MAX_THREADS = 4; |
|
|
|
// Deduce how many threads we can use
|
|
|
|
const u32 threads_used = std::thread::hardware_concurrency() / 4; |
|
|
|
// Always allow at least 1 thread regardless of our settings
|
|
|
|
const auto max_worker_count = std::max(1U, threads_used); |
|
|
|
// Don't use more than MAX_THREADS
|
|
|
|
const auto num_workers = std::min(max_worker_count, MAX_THREADS); |
|
|
|
|
|
|
|
// If we already have workers queued, ignore
|
|
|
|
if (num_workers == worker_threads.size()) { |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
@ -111,24 +119,50 @@ void AsyncShaders::QueueOpenGLShader(const OpenGL::Device& device, |
|
|
|
VideoCommon::Shader::CompilerSettings compiler_settings, |
|
|
|
const VideoCommon::Shader::Registry& registry, |
|
|
|
VAddr cpu_addr) { |
|
|
|
WorkerParams params{device.UseAssemblyShaders() ? AsyncShaders::Backend::GLASM |
|
|
|
: AsyncShaders::Backend::OpenGL, |
|
|
|
device, |
|
|
|
shader_type, |
|
|
|
uid, |
|
|
|
std::move(code), |
|
|
|
std::move(code_b), |
|
|
|
main_offset, |
|
|
|
compiler_settings, |
|
|
|
registry, |
|
|
|
cpu_addr}; |
|
|
|
WorkerParams params{ |
|
|
|
.backend = device.UseAssemblyShaders() ? Backend::GLASM : Backend::OpenGL, |
|
|
|
.device = &device, |
|
|
|
.shader_type = shader_type, |
|
|
|
.uid = uid, |
|
|
|
.code = std::move(code), |
|
|
|
.code_b = std::move(code_b), |
|
|
|
.main_offset = main_offset, |
|
|
|
.compiler_settings = compiler_settings, |
|
|
|
.registry = registry, |
|
|
|
.cpu_address = cpu_addr, |
|
|
|
}; |
|
|
|
std::unique_lock lock(queue_mutex); |
|
|
|
pending_queue.push_back(std::move(params)); |
|
|
|
pending_queue.push(std::move(params)); |
|
|
|
cv.notify_one(); |
|
|
|
} |
|
|
|
|
|
|
|
void AsyncShaders::QueueVulkanShader(Vulkan::VKPipelineCache* pp_cache, |
|
|
|
const Vulkan::VKDevice& device, Vulkan::VKScheduler& scheduler, |
|
|
|
Vulkan::VKDescriptorPool& descriptor_pool, |
|
|
|
Vulkan::VKUpdateDescriptorQueue& update_descriptor_queue, |
|
|
|
Vulkan::VKRenderPassCache& renderpass_cache, |
|
|
|
std::vector<VkDescriptorSetLayoutBinding> bindings, |
|
|
|
Vulkan::SPIRVProgram program, |
|
|
|
Vulkan::GraphicsPipelineCacheKey key) { |
|
|
|
WorkerParams params{ |
|
|
|
.backend = Backend::Vulkan, |
|
|
|
.pp_cache = pp_cache, |
|
|
|
.vk_device = &device, |
|
|
|
.scheduler = &scheduler, |
|
|
|
.descriptor_pool = &descriptor_pool, |
|
|
|
.update_descriptor_queue = &update_descriptor_queue, |
|
|
|
.renderpass_cache = &renderpass_cache, |
|
|
|
.bindings = bindings, |
|
|
|
.program = program, |
|
|
|
.key = key, |
|
|
|
}; |
|
|
|
|
|
|
|
std::unique_lock lock(queue_mutex); |
|
|
|
pending_queue.push(std::move(params)); |
|
|
|
cv.notify_one(); |
|
|
|
} |
|
|
|
|
|
|
|
void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context) { |
|
|
|
using namespace std::chrono_literals; |
|
|
|
while (!is_thread_exiting.load(std::memory_order_relaxed)) { |
|
|
|
std::unique_lock lock{queue_mutex}; |
|
|
|
cv.wait(lock, [this] { return HasWorkQueued() || is_thread_exiting; }); |
|
|
|
@ -144,18 +178,17 @@ void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context |
|
|
|
if (pending_queue.empty()) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
|
|
|
|
// Pull work from queue
|
|
|
|
WorkerParams work = std::move(pending_queue.front()); |
|
|
|
pending_queue.pop_front(); |
|
|
|
|
|
|
|
pending_queue.pop(); |
|
|
|
lock.unlock(); |
|
|
|
|
|
|
|
if (work.backend == AsyncShaders::Backend::OpenGL || |
|
|
|
work.backend == AsyncShaders::Backend::GLASM) { |
|
|
|
const ShaderIR ir(work.code, work.main_offset, work.compiler_settings, work.registry); |
|
|
|
if (work.backend == Backend::OpenGL || work.backend == Backend::GLASM) { |
|
|
|
const ShaderIR ir(work.code, work.main_offset, work.compiler_settings, *work.registry); |
|
|
|
const auto scope = context->Acquire(); |
|
|
|
auto program = |
|
|
|
OpenGL::BuildShader(work.device, work.shader_type, work.uid, ir, work.registry); |
|
|
|
OpenGL::BuildShader(*work.device, work.shader_type, work.uid, ir, *work.registry); |
|
|
|
Result result{}; |
|
|
|
result.backend = work.backend; |
|
|
|
result.cpu_address = work.cpu_address; |
|
|
|
@ -164,9 +197,9 @@ void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context |
|
|
|
result.code_b = std::move(work.code_b); |
|
|
|
result.shader_type = work.shader_type; |
|
|
|
|
|
|
|
if (work.backend == AsyncShaders::Backend::OpenGL) { |
|
|
|
if (work.backend == Backend::OpenGL) { |
|
|
|
result.program.opengl = std::move(program->source_program); |
|
|
|
} else if (work.backend == AsyncShaders::Backend::GLASM) { |
|
|
|
} else if (work.backend == Backend::GLASM) { |
|
|
|
result.program.glasm = std::move(program->assembly_program); |
|
|
|
} |
|
|
|
|
|
|
|
@ -174,6 +207,13 @@ void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context |
|
|
|
std::unique_lock complete_lock(completed_mutex); |
|
|
|
finished_work.push_back(std::move(result)); |
|
|
|
} |
|
|
|
} else if (work.backend == Backend::Vulkan) { |
|
|
|
auto pipeline = std::make_unique<Vulkan::VKGraphicsPipeline>( |
|
|
|
*work.vk_device, *work.scheduler, *work.descriptor_pool, |
|
|
|
*work.update_descriptor_queue, *work.renderpass_cache, work.key, work.bindings, |
|
|
|
work.program); |
|
|
|
|
|
|
|
work.pp_cache->EmplacePipeline(std::move(pipeline)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|