|
|
|
@ -13,6 +13,7 @@ |
|
|
|
#include "common/logging/log.h"
|
|
|
|
#include "common/math_util.h"
|
|
|
|
#include "common/microprofile.h"
|
|
|
|
#include "common/quaternion.h"
|
|
|
|
#include "common/vector_math.h"
|
|
|
|
#include "core/hw/gpu.h"
|
|
|
|
#include "core/memory.h"
|
|
|
|
@ -114,6 +115,86 @@ static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v |
|
|
|
return std::make_tuple(x / z * half + half, y / z * half + half, addr); |
|
|
|
} |
|
|
|
|
|
|
|
std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view) { |
|
|
|
const auto& lighting = g_state.regs.lighting; |
|
|
|
|
|
|
|
if (lighting.disable) |
|
|
|
return {{}, {}}; |
|
|
|
|
|
|
|
// TODO(Subv): Bump mapping
|
|
|
|
Math::Vec3<float> surface_normal = {0.0f, 0.0f, 1.0f}; |
|
|
|
|
|
|
|
if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) { |
|
|
|
LOG_CRITICAL(HW_GPU, "unimplemented bump mapping"); |
|
|
|
UNIMPLEMENTED(); |
|
|
|
} |
|
|
|
|
|
|
|
// TODO(Subv): Do we need to normalize the quaternion here?
|
|
|
|
auto normal = Math::QuaternionRotate(normquat, surface_normal); |
|
|
|
|
|
|
|
Math::Vec3<float> light_vector = {}; |
|
|
|
Math::Vec3<float> diffuse_sum = {}; |
|
|
|
// TODO(Subv): Calculate specular
|
|
|
|
Math::Vec3<float> specular_sum = {}; |
|
|
|
|
|
|
|
for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) { |
|
|
|
unsigned num = lighting.light_enable.GetNum(light_index); |
|
|
|
const auto& light_config = g_state.regs.lighting.light[num]; |
|
|
|
|
|
|
|
Math::Vec3<float> position = {float16::FromRaw(light_config.x).ToFloat32(), float16::FromRaw(light_config.y).ToFloat32(), float16::FromRaw(light_config.z).ToFloat32()}; |
|
|
|
|
|
|
|
if (light_config.config.directional) |
|
|
|
light_vector = position; |
|
|
|
else |
|
|
|
light_vector = position + view; |
|
|
|
|
|
|
|
light_vector.Normalize(); |
|
|
|
|
|
|
|
auto dot_product = Math::Dot(light_vector, normal); |
|
|
|
|
|
|
|
if (light_config.config.two_sided_diffuse) |
|
|
|
dot_product = std::abs(dot_product); |
|
|
|
else |
|
|
|
dot_product = std::max(dot_product, 0.0f); |
|
|
|
|
|
|
|
float dist_atten = 1.0f; |
|
|
|
if (!lighting.IsDistAttenDisabled(num)) { |
|
|
|
auto distance = (-view - position).Length(); |
|
|
|
float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32(); |
|
|
|
float bias = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32(); |
|
|
|
size_t lut = static_cast<size_t>(LightingRegs::LightingSampler::DistanceAttenuation) + num; |
|
|
|
|
|
|
|
float sample_loc = scale * distance + bias; |
|
|
|
unsigned index_i = static_cast<unsigned>(MathUtil::Clamp(floor(sample_loc * 256), 0.0f, 1.0f)); |
|
|
|
|
|
|
|
float index_f = sample_loc - index_i; |
|
|
|
|
|
|
|
ASSERT_MSG(lut < g_state.lighting.luts.size(), "Out of range lut"); |
|
|
|
|
|
|
|
float lut_value = g_state.lighting.luts[lut][index_i].ToFloat(); |
|
|
|
float lut_diff = g_state.lighting.luts[lut][index_i].DiffToFloat(); |
|
|
|
|
|
|
|
dist_atten = lut_value + lut_diff * index_f; |
|
|
|
} |
|
|
|
|
|
|
|
auto diffuse = light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f(); |
|
|
|
diffuse_sum += diffuse * dist_atten; |
|
|
|
} |
|
|
|
|
|
|
|
diffuse_sum += lighting.global_ambient.ToVec3f(); |
|
|
|
return { |
|
|
|
Math::MakeVec<float>(MathUtil::Clamp(diffuse_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.z, 0.0f, 1.0f) * 255, 255).Cast<u8>(), |
|
|
|
Math::MakeVec<float>(MathUtil::Clamp(specular_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.z, 0.0f, 1.0f) * 255, 255).Cast<u8>() |
|
|
|
}; |
|
|
|
} |
|
|
|
|
|
|
|
static bool AreQuaternionsOpposite(Math::Vec4<Pica::float24> qa, Math::Vec4<Pica::float24> qb) { |
|
|
|
Math::Vec4f a{ qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32() }; |
|
|
|
Math::Vec4f b{ qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32() }; |
|
|
|
|
|
|
|
return (Math::Dot(a, b) < 0.f); |
|
|
|
} |
|
|
|
|
|
|
|
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240)); |
|
|
|
|
|
|
|
/**
|
|
|
|
@ -207,6 +288,15 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve |
|
|
|
int bias2 = |
|
|
|
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; |
|
|
|
|
|
|
|
// Flip the quaternions if they are opposite to prevent interpolating them over the wrong direction.
|
|
|
|
auto v1_quat = v1.quat; |
|
|
|
auto v2_quat = v2.quat; |
|
|
|
|
|
|
|
if (AreQuaternionsOpposite(v0.quat, v1.quat)) |
|
|
|
v1_quat = v1_quat * float24::FromFloat32(-1.0f); |
|
|
|
if (AreQuaternionsOpposite(v0.quat, v2.quat)) |
|
|
|
v2_quat = v2_quat * float24::FromFloat32(-1.0f); |
|
|
|
|
|
|
|
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); |
|
|
|
|
|
|
|
auto textures = regs.texturing.GetTextures(); |
|
|
|
@ -305,6 +395,21 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve |
|
|
|
255), |
|
|
|
}; |
|
|
|
|
|
|
|
Math::Quaternion<float> normquat{ |
|
|
|
{ |
|
|
|
GetInterpolatedAttribute(v0.quat.x, v1_quat.x, v2_quat.x).ToFloat32(), |
|
|
|
GetInterpolatedAttribute(v0.quat.y, v1_quat.y, v2_quat.y).ToFloat32(), |
|
|
|
GetInterpolatedAttribute(v0.quat.z, v1_quat.z, v2_quat.z).ToFloat32() |
|
|
|
}, |
|
|
|
GetInterpolatedAttribute(v0.quat.w, v1_quat.w, v2_quat.w).ToFloat32(), |
|
|
|
}; |
|
|
|
|
|
|
|
Math::Vec3<float> fragment_position{ |
|
|
|
GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), |
|
|
|
GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), |
|
|
|
GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32() |
|
|
|
}; |
|
|
|
|
|
|
|
Math::Vec2<float24> uv[3]; |
|
|
|
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); |
|
|
|
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); |
|
|
|
@ -419,6 +524,11 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve |
|
|
|
regs.texturing.tev_combiner_buffer_color.a, |
|
|
|
}; |
|
|
|
|
|
|
|
Math::Vec4<u8> primary_fragment_color; |
|
|
|
Math::Vec4<u8> secondary_fragment_color; |
|
|
|
|
|
|
|
std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(normquat, fragment_position); |
|
|
|
|
|
|
|
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); |
|
|
|
++tev_stage_index) { |
|
|
|
const auto& tev_stage = tev_stages[tev_stage_index]; |
|
|
|
@ -427,14 +537,13 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve |
|
|
|
auto GetSource = [&](Source source) -> Math::Vec4<u8> { |
|
|
|
switch (source) { |
|
|
|
case Source::PrimaryColor: |
|
|
|
return primary_color; |
|
|
|
|
|
|
|
// HACK: Until we implement fragment lighting, use primary_color
|
|
|
|
case Source::PrimaryFragmentColor: |
|
|
|
return primary_color; |
|
|
|
return primary_fragment_color; |
|
|
|
|
|
|
|
// HACK: Until we implement fragment lighting, use zero
|
|
|
|
case Source::SecondaryFragmentColor: |
|
|
|
return {0, 0, 0, 0}; |
|
|
|
return secondary_fragment_color; |
|
|
|
|
|
|
|
case Source::Texture0: |
|
|
|
return texture_color[0]; |
|
|
|
|