|
|
|
@ -16,107 +16,126 @@ |
|
|
|
namespace Kernel { |
|
|
|
|
|
|
|
class KPageBitmap { |
|
|
|
private: |
|
|
|
public: |
|
|
|
class RandomBitGenerator { |
|
|
|
private: |
|
|
|
Common::TinyMT rng{}; |
|
|
|
u32 entropy{}; |
|
|
|
u32 bits_available{}; |
|
|
|
public: |
|
|
|
RandomBitGenerator() { |
|
|
|
m_rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64())); |
|
|
|
} |
|
|
|
|
|
|
|
u64 SelectRandomBit(u64 bitmap) { |
|
|
|
u64 selected = 0; |
|
|
|
|
|
|
|
for (size_t cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2; cur_num_bits != 0; |
|
|
|
cur_num_bits /= 2) { |
|
|
|
const u64 high = (bitmap >> cur_num_bits); |
|
|
|
const u64 low = (bitmap & (~(UINT64_C(0xFFFFFFFFFFFFFFFF) << cur_num_bits))); |
|
|
|
|
|
|
|
// Choose high if we have high and (don't have low or select high randomly). |
|
|
|
if (high && (low == 0 || this->GenerateRandomBit())) { |
|
|
|
bitmap = high; |
|
|
|
selected += cur_num_bits; |
|
|
|
} else { |
|
|
|
bitmap = low; |
|
|
|
selected += 0; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return selected; |
|
|
|
} |
|
|
|
|
|
|
|
u64 GenerateRandom(u64 max) { |
|
|
|
// Determine the number of bits we need. |
|
|
|
const u64 bits_needed = 1 + (Common::BitSize<decltype(max)>() - std::countl_zero(max)); |
|
|
|
|
|
|
|
// Generate a random value of the desired bitwidth. |
|
|
|
const u64 rnd = this->GenerateRandomBits(static_cast<u32>(bits_needed)); |
|
|
|
|
|
|
|
// Adjust the value to be in range. |
|
|
|
return rnd - ((rnd / max) * max); |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
void RefreshEntropy() { |
|
|
|
entropy = rng.GenerateRandomU32(); |
|
|
|
bits_available = static_cast<u32>(Common::BitSize<decltype(entropy)>()); |
|
|
|
m_entropy = m_rng.GenerateRandomU32(); |
|
|
|
m_bits_available = static_cast<u32>(Common::BitSize<decltype(m_entropy)>()); |
|
|
|
} |
|
|
|
|
|
|
|
bool GenerateRandomBit() { |
|
|
|
if (bits_available == 0) { |
|
|
|
if (m_bits_available == 0) { |
|
|
|
this->RefreshEntropy(); |
|
|
|
} |
|
|
|
|
|
|
|
const bool rnd_bit = (entropy & 1) != 0; |
|
|
|
entropy >>= 1; |
|
|
|
--bits_available; |
|
|
|
const bool rnd_bit = (m_entropy & 1) != 0; |
|
|
|
m_entropy >>= 1; |
|
|
|
--m_bits_available; |
|
|
|
return rnd_bit; |
|
|
|
} |
|
|
|
|
|
|
|
public: |
|
|
|
RandomBitGenerator() { |
|
|
|
rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64())); |
|
|
|
} |
|
|
|
u64 GenerateRandomBits(u32 num_bits) { |
|
|
|
u64 result = 0; |
|
|
|
|
|
|
|
std::size_t SelectRandomBit(u64 bitmap) { |
|
|
|
u64 selected = 0; |
|
|
|
// Iteratively add random bits to our result. |
|
|
|
while (num_bits > 0) { |
|
|
|
// Ensure we have random bits to take from. |
|
|
|
if (m_bits_available == 0) { |
|
|
|
this->RefreshEntropy(); |
|
|
|
} |
|
|
|
|
|
|
|
u64 cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2; |
|
|
|
u64 cur_mask = (1ULL << cur_num_bits) - 1; |
|
|
|
// Determine how many bits to take this round. |
|
|
|
const auto cur_bits = std::min(num_bits, m_bits_available); |
|
|
|
|
|
|
|
while (cur_num_bits) { |
|
|
|
const u64 low = (bitmap >> 0) & cur_mask; |
|
|
|
const u64 high = (bitmap >> cur_num_bits) & cur_mask; |
|
|
|
// Generate mask for our current bits. |
|
|
|
const u64 mask = (static_cast<u64>(1) << cur_bits) - 1; |
|
|
|
|
|
|
|
bool choose_low; |
|
|
|
if (high == 0) { |
|
|
|
// If only low val is set, choose low. |
|
|
|
choose_low = true; |
|
|
|
} else if (low == 0) { |
|
|
|
// If only high val is set, choose high. |
|
|
|
choose_low = false; |
|
|
|
} else { |
|
|
|
// If both are set, choose random. |
|
|
|
choose_low = this->GenerateRandomBit(); |
|
|
|
} |
|
|
|
// Add bits to output from our entropy. |
|
|
|
result <<= cur_bits; |
|
|
|
result |= (m_entropy & mask); |
|
|
|
|
|
|
|
// If we chose low, proceed with low. |
|
|
|
if (choose_low) { |
|
|
|
bitmap = low; |
|
|
|
selected += 0; |
|
|
|
} else { |
|
|
|
bitmap = high; |
|
|
|
selected += cur_num_bits; |
|
|
|
} |
|
|
|
// Remove bits from our entropy. |
|
|
|
m_entropy >>= cur_bits; |
|
|
|
m_bits_available -= cur_bits; |
|
|
|
|
|
|
|
// Proceed. |
|
|
|
cur_num_bits /= 2; |
|
|
|
cur_mask >>= cur_num_bits; |
|
|
|
// Advance. |
|
|
|
num_bits -= cur_bits; |
|
|
|
} |
|
|
|
|
|
|
|
return selected; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
Common::TinyMT m_rng; |
|
|
|
u32 m_entropy{}; |
|
|
|
u32 m_bits_available{}; |
|
|
|
}; |
|
|
|
|
|
|
|
public: |
|
|
|
static constexpr std::size_t MaxDepth = 4; |
|
|
|
|
|
|
|
private: |
|
|
|
std::array<u64*, MaxDepth> bit_storages{}; |
|
|
|
RandomBitGenerator rng{}; |
|
|
|
std::size_t num_bits{}; |
|
|
|
std::size_t used_depths{}; |
|
|
|
static constexpr size_t MaxDepth = 4; |
|
|
|
|
|
|
|
public: |
|
|
|
KPageBitmap() = default; |
|
|
|
|
|
|
|
constexpr std::size_t GetNumBits() const { |
|
|
|
return num_bits; |
|
|
|
constexpr size_t GetNumBits() const { |
|
|
|
return m_num_bits; |
|
|
|
} |
|
|
|
constexpr s32 GetHighestDepthIndex() const { |
|
|
|
return static_cast<s32>(used_depths) - 1; |
|
|
|
return static_cast<s32>(m_used_depths) - 1; |
|
|
|
} |
|
|
|
|
|
|
|
u64* Initialize(u64* storage, std::size_t size) { |
|
|
|
u64* Initialize(u64* storage, size_t size) { |
|
|
|
// Initially, everything is un-set. |
|
|
|
num_bits = 0; |
|
|
|
m_num_bits = 0; |
|
|
|
|
|
|
|
// Calculate the needed bitmap depth. |
|
|
|
used_depths = static_cast<std::size_t>(GetRequiredDepth(size)); |
|
|
|
ASSERT(used_depths <= MaxDepth); |
|
|
|
m_used_depths = static_cast<size_t>(GetRequiredDepth(size)); |
|
|
|
ASSERT(m_used_depths <= MaxDepth); |
|
|
|
|
|
|
|
// Set the bitmap pointers. |
|
|
|
for (s32 depth = this->GetHighestDepthIndex(); depth >= 0; depth--) { |
|
|
|
bit_storages[depth] = storage; |
|
|
|
m_bit_storages[depth] = storage; |
|
|
|
size = Common::AlignUp(size, Common::BitSize<u64>()) / Common::BitSize<u64>(); |
|
|
|
storage += size; |
|
|
|
m_end_storages[depth] = storage; |
|
|
|
} |
|
|
|
|
|
|
|
return storage; |
|
|
|
@ -128,19 +147,19 @@ public: |
|
|
|
|
|
|
|
if (random) { |
|
|
|
do { |
|
|
|
const u64 v = bit_storages[depth][offset]; |
|
|
|
const u64 v = m_bit_storages[depth][offset]; |
|
|
|
if (v == 0) { |
|
|
|
// If depth is bigger than zero, then a previous level indicated a block was |
|
|
|
// free. |
|
|
|
ASSERT(depth == 0); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
offset = offset * Common::BitSize<u64>() + rng.SelectRandomBit(v); |
|
|
|
offset = offset * Common::BitSize<u64>() + m_rng.SelectRandomBit(v); |
|
|
|
++depth; |
|
|
|
} while (depth < static_cast<s32>(used_depths)); |
|
|
|
} while (depth < static_cast<s32>(m_used_depths)); |
|
|
|
} else { |
|
|
|
do { |
|
|
|
const u64 v = bit_storages[depth][offset]; |
|
|
|
const u64 v = m_bit_storages[depth][offset]; |
|
|
|
if (v == 0) { |
|
|
|
// If depth is bigger than zero, then a previous level indicated a block was |
|
|
|
// free. |
|
|
|
@ -149,28 +168,69 @@ public: |
|
|
|
} |
|
|
|
offset = offset * Common::BitSize<u64>() + std::countr_zero(v); |
|
|
|
++depth; |
|
|
|
} while (depth < static_cast<s32>(used_depths)); |
|
|
|
} while (depth < static_cast<s32>(m_used_depths)); |
|
|
|
} |
|
|
|
|
|
|
|
return static_cast<s64>(offset); |
|
|
|
} |
|
|
|
|
|
|
|
void SetBit(std::size_t offset) { |
|
|
|
s64 FindFreeRange(size_t count) { |
|
|
|
// Check that it is possible to find a range. |
|
|
|
const u64* const storage_start = m_bit_storages[m_used_depths - 1]; |
|
|
|
const u64* const storage_end = m_end_storages[m_used_depths - 1]; |
|
|
|
|
|
|
|
// If we don't have a storage to iterate (or want more blocks than fit in a single storage), |
|
|
|
// we can't find a free range. |
|
|
|
if (!(storage_start < storage_end && count <= Common::BitSize<u64>())) { |
|
|
|
return -1; |
|
|
|
} |
|
|
|
|
|
|
|
// Walk the storages to select a random free range. |
|
|
|
const size_t options_per_storage = std::max<size_t>(Common::BitSize<u64>() / count, 1); |
|
|
|
const size_t num_entries = std::max<size_t>(storage_end - storage_start, 1); |
|
|
|
|
|
|
|
const u64 free_mask = (static_cast<u64>(1) << count) - 1; |
|
|
|
|
|
|
|
size_t num_valid_options = 0; |
|
|
|
s64 chosen_offset = -1; |
|
|
|
for (size_t storage_index = 0; storage_index < num_entries; ++storage_index) { |
|
|
|
u64 storage = storage_start[storage_index]; |
|
|
|
for (size_t option = 0; option < options_per_storage; ++option) { |
|
|
|
if ((storage & free_mask) == free_mask) { |
|
|
|
// We've found a new valid option. |
|
|
|
++num_valid_options; |
|
|
|
|
|
|
|
// Select the Kth valid option with probability 1/K. This leads to an overall |
|
|
|
// uniform distribution. |
|
|
|
if (num_valid_options == 1 || m_rng.GenerateRandom(num_valid_options) == 0) { |
|
|
|
// This is our first option, so select it. |
|
|
|
chosen_offset = storage_index * Common::BitSize<u64>() + option * count; |
|
|
|
} |
|
|
|
} |
|
|
|
storage >>= count; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Return the random offset we chose.*/ |
|
|
|
return chosen_offset; |
|
|
|
} |
|
|
|
|
|
|
|
void SetBit(size_t offset) { |
|
|
|
this->SetBit(this->GetHighestDepthIndex(), offset); |
|
|
|
num_bits++; |
|
|
|
m_num_bits++; |
|
|
|
} |
|
|
|
|
|
|
|
void ClearBit(std::size_t offset) { |
|
|
|
void ClearBit(size_t offset) { |
|
|
|
this->ClearBit(this->GetHighestDepthIndex(), offset); |
|
|
|
num_bits--; |
|
|
|
m_num_bits--; |
|
|
|
} |
|
|
|
|
|
|
|
bool ClearRange(std::size_t offset, std::size_t count) { |
|
|
|
bool ClearRange(size_t offset, size_t count) { |
|
|
|
s32 depth = this->GetHighestDepthIndex(); |
|
|
|
u64* bits = bit_storages[depth]; |
|
|
|
std::size_t bit_ind = offset / Common::BitSize<u64>(); |
|
|
|
if (count < Common::BitSize<u64>()) { |
|
|
|
const std::size_t shift = offset % Common::BitSize<u64>(); |
|
|
|
u64* bits = m_bit_storages[depth]; |
|
|
|
size_t bit_ind = offset / Common::BitSize<u64>(); |
|
|
|
if (count < Common::BitSize<u64>()) [[likely]] { |
|
|
|
const size_t shift = offset % Common::BitSize<u64>(); |
|
|
|
ASSERT(shift + count <= Common::BitSize<u64>()); |
|
|
|
// Check that all the bits are set. |
|
|
|
const u64 mask = ((u64(1) << count) - 1) << shift; |
|
|
|
@ -189,8 +249,8 @@ public: |
|
|
|
ASSERT(offset % Common::BitSize<u64>() == 0); |
|
|
|
ASSERT(count % Common::BitSize<u64>() == 0); |
|
|
|
// Check that all the bits are set. |
|
|
|
std::size_t remaining = count; |
|
|
|
std::size_t i = 0; |
|
|
|
size_t remaining = count; |
|
|
|
size_t i = 0; |
|
|
|
do { |
|
|
|
if (bits[bit_ind + i++] != ~u64(0)) { |
|
|
|
return false; |
|
|
|
@ -209,18 +269,18 @@ public: |
|
|
|
} while (remaining > 0); |
|
|
|
} |
|
|
|
|
|
|
|
num_bits -= count; |
|
|
|
m_num_bits -= count; |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
void SetBit(s32 depth, std::size_t offset) { |
|
|
|
void SetBit(s32 depth, size_t offset) { |
|
|
|
while (depth >= 0) { |
|
|
|
std::size_t ind = offset / Common::BitSize<u64>(); |
|
|
|
std::size_t which = offset % Common::BitSize<u64>(); |
|
|
|
size_t ind = offset / Common::BitSize<u64>(); |
|
|
|
size_t which = offset % Common::BitSize<u64>(); |
|
|
|
const u64 mask = u64(1) << which; |
|
|
|
|
|
|
|
u64* bit = std::addressof(bit_storages[depth][ind]); |
|
|
|
u64* bit = std::addressof(m_bit_storages[depth][ind]); |
|
|
|
u64 v = *bit; |
|
|
|
ASSERT((v & mask) == 0); |
|
|
|
*bit = v | mask; |
|
|
|
@ -232,13 +292,13 @@ private: |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void ClearBit(s32 depth, std::size_t offset) { |
|
|
|
void ClearBit(s32 depth, size_t offset) { |
|
|
|
while (depth >= 0) { |
|
|
|
std::size_t ind = offset / Common::BitSize<u64>(); |
|
|
|
std::size_t which = offset % Common::BitSize<u64>(); |
|
|
|
size_t ind = offset / Common::BitSize<u64>(); |
|
|
|
size_t which = offset % Common::BitSize<u64>(); |
|
|
|
const u64 mask = u64(1) << which; |
|
|
|
|
|
|
|
u64* bit = std::addressof(bit_storages[depth][ind]); |
|
|
|
u64* bit = std::addressof(m_bit_storages[depth][ind]); |
|
|
|
u64 v = *bit; |
|
|
|
ASSERT((v & mask) != 0); |
|
|
|
v &= ~mask; |
|
|
|
@ -252,7 +312,7 @@ private: |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
static constexpr s32 GetRequiredDepth(std::size_t region_size) { |
|
|
|
static constexpr s32 GetRequiredDepth(size_t region_size) { |
|
|
|
s32 depth = 0; |
|
|
|
while (true) { |
|
|
|
region_size /= Common::BitSize<u64>(); |
|
|
|
@ -264,8 +324,8 @@ private: |
|
|
|
} |
|
|
|
|
|
|
|
public: |
|
|
|
static constexpr std::size_t CalculateManagementOverheadSize(std::size_t region_size) { |
|
|
|
std::size_t overhead_bits = 0; |
|
|
|
static constexpr size_t CalculateManagementOverheadSize(size_t region_size) { |
|
|
|
size_t overhead_bits = 0; |
|
|
|
for (s32 depth = GetRequiredDepth(region_size) - 1; depth >= 0; depth--) { |
|
|
|
region_size = |
|
|
|
Common::AlignUp(region_size, Common::BitSize<u64>()) / Common::BitSize<u64>(); |
|
|
|
@ -273,6 +333,13 @@ public: |
|
|
|
} |
|
|
|
return overhead_bits * sizeof(u64); |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
std::array<u64*, MaxDepth> m_bit_storages{}; |
|
|
|
std::array<u64*, MaxDepth> m_end_storages{}; |
|
|
|
RandomBitGenerator m_rng; |
|
|
|
size_t m_num_bits{}; |
|
|
|
size_t m_used_depths{}; |
|
|
|
}; |
|
|
|
|
|
|
|
} // namespace Kernel |