5 changed files with 295 additions and 0 deletions
-
2src/core/CMakeLists.txt
-
5src/core/core_timing_util.cpp
-
1src/core/core_timing_util.h
-
161src/core/host_timing.cpp
-
126src/core/host_timing.h
@ -0,0 +1,161 @@ |
|||||
|
// Copyright 2020 yuzu Emulator Project
|
||||
|
// Licensed under GPLv2 or any later version
|
||||
|
// Refer to the license.txt file included.
|
||||
|
|
||||
|
#include "core/host_timing.h"
|
||||
|
|
||||
|
#include <algorithm>
|
||||
|
#include <mutex>
|
||||
|
#include <string>
|
||||
|
#include <tuple>
|
||||
|
|
||||
|
#include "common/assert.h"
|
||||
|
#include "common/thread.h"
|
||||
|
#include "core/core_timing_util.h"
|
||||
|
|
||||
|
namespace Core::HostTiming { |
||||
|
|
||||
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) { |
||||
|
return std::make_shared<EventType>(std::move(callback), std::move(name)); |
||||
|
} |
||||
|
|
||||
|
struct CoreTiming::Event { |
||||
|
u64 time; |
||||
|
u64 fifo_order; |
||||
|
u64 userdata; |
||||
|
std::weak_ptr<EventType> type; |
||||
|
|
||||
|
// Sort by time, unless the times are the same, in which case sort by
|
||||
|
// the order added to the queue
|
||||
|
friend bool operator>(const Event& left, const Event& right) { |
||||
|
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order); |
||||
|
} |
||||
|
|
||||
|
friend bool operator<(const Event& left, const Event& right) { |
||||
|
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order); |
||||
|
} |
||||
|
}; |
||||
|
|
||||
|
CoreTiming::CoreTiming() = default; |
||||
|
CoreTiming::~CoreTiming() = default; |
||||
|
|
||||
|
void CoreTiming::ThreadEntry(CoreTiming& instance) { |
||||
|
instance.Advance(); |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::Initialize() { |
||||
|
event_fifo_id = 0; |
||||
|
const auto empty_timed_callback = [](u64, s64) {}; |
||||
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback); |
||||
|
start_time = std::chrono::system_clock::now(); |
||||
|
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this)); |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::Shutdown() { |
||||
|
std::unique_lock<std::mutex> guard(inner_mutex); |
||||
|
shutting_down = true; |
||||
|
if (!is_set) { |
||||
|
is_set = true; |
||||
|
condvar.notify_one(); |
||||
|
} |
||||
|
inner_mutex.unlock(); |
||||
|
timer_thread->join(); |
||||
|
ClearPendingEvents(); |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type, |
||||
|
u64 userdata) { |
||||
|
std::lock_guard guard{inner_mutex}; |
||||
|
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future); |
||||
|
|
||||
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); |
||||
|
|
||||
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
||||
|
if (!is_set) { |
||||
|
is_set = true; |
||||
|
condvar.notify_one(); |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) { |
||||
|
std::lock_guard guard{inner_mutex}; |
||||
|
|
||||
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { |
||||
|
return e.type.lock().get() == event_type.get() && e.userdata == userdata; |
||||
|
}); |
||||
|
|
||||
|
// Removing random items breaks the invariant so we have to re-establish it.
|
||||
|
if (itr != event_queue.end()) { |
||||
|
event_queue.erase(itr, event_queue.end()); |
||||
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
u64 CoreTiming::GetCPUTicks() const { |
||||
|
std::chrono::nanoseconds time_now = GetGlobalTimeNs(); |
||||
|
return Core::Timing::nsToCycles(time_now); |
||||
|
} |
||||
|
|
||||
|
u64 CoreTiming::GetClockTicks() const { |
||||
|
std::chrono::nanoseconds time_now = GetGlobalTimeNs(); |
||||
|
return Core::Timing::nsToClockCycles(time_now); |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::ClearPendingEvents() { |
||||
|
event_queue.clear(); |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) { |
||||
|
std::lock_guard guard{inner_mutex}; |
||||
|
|
||||
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { |
||||
|
return e.type.lock().get() == event_type.get(); |
||||
|
}); |
||||
|
|
||||
|
// Removing random items breaks the invariant so we have to re-establish it.
|
||||
|
if (itr != event_queue.end()) { |
||||
|
event_queue.erase(itr, event_queue.end()); |
||||
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
void CoreTiming::Advance() { |
||||
|
while (true) { |
||||
|
std::unique_lock<std::mutex> guard(inner_mutex); |
||||
|
|
||||
|
global_timer = GetGlobalTimeNs().count(); |
||||
|
|
||||
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) { |
||||
|
Event evt = std::move(event_queue.front()); |
||||
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
||||
|
event_queue.pop_back(); |
||||
|
inner_mutex.unlock(); |
||||
|
|
||||
|
if (auto event_type{evt.type.lock()}) { |
||||
|
event_type->callback(evt.userdata, global_timer - evt.time); |
||||
|
} |
||||
|
|
||||
|
inner_mutex.lock(); |
||||
|
} |
||||
|
auto next_time = std::chrono::nanoseconds(event_queue.front().time - global_timer); |
||||
|
condvar.wait_for(guard, next_time, [this] { return is_set; }); |
||||
|
is_set = false; |
||||
|
if (shutting_down) { |
||||
|
break; |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const { |
||||
|
sys_time_point current = std::chrono::system_clock::now(); |
||||
|
auto elapsed = current - start_time; |
||||
|
return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed); |
||||
|
} |
||||
|
|
||||
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { |
||||
|
sys_time_point current = std::chrono::system_clock::now(); |
||||
|
auto elapsed = current - start_time; |
||||
|
return std::chrono::duration_cast<std::chrono::microseconds>(elapsed); |
||||
|
} |
||||
|
|
||||
|
} // namespace Core::Timing
|
||||
@ -0,0 +1,126 @@ |
|||||
|
// Copyright 2020 yuzu Emulator Project |
||||
|
// Licensed under GPLv2 or any later version |
||||
|
// Refer to the license.txt file included. |
||||
|
|
||||
|
#pragma once |
||||
|
|
||||
|
#include <chrono> |
||||
|
#include <functional> |
||||
|
#include <memory> |
||||
|
#include <mutex> |
||||
|
#include <optional> |
||||
|
#include <string> |
||||
|
#include <thread> |
||||
|
#include <vector> |
||||
|
|
||||
|
#include "common/common_types.h" |
||||
|
#include "common/threadsafe_queue.h" |
||||
|
|
||||
|
namespace Core::HostTiming { |
||||
|
|
||||
|
/// A callback that may be scheduled for a particular core timing event. |
||||
|
using TimedCallback = std::function<void(u64 userdata, s64 cycles_late)>; |
||||
|
using sys_time_point = std::chrono::time_point<std::chrono::system_clock>; |
||||
|
|
||||
|
/// Contains the characteristics of a particular event. |
||||
|
struct EventType { |
||||
|
EventType(TimedCallback&& callback, std::string&& name) |
||||
|
: callback{std::move(callback)}, name{std::move(name)} {} |
||||
|
|
||||
|
/// The event's callback function. |
||||
|
TimedCallback callback; |
||||
|
/// A pointer to the name of the event. |
||||
|
const std::string name; |
||||
|
}; |
||||
|
|
||||
|
/** |
||||
|
* This is a system to schedule events into the emulated machine's future. Time is measured |
||||
|
* in main CPU clock cycles. |
||||
|
* |
||||
|
* To schedule an event, you first have to register its type. This is where you pass in the |
||||
|
* callback. You then schedule events using the type id you get back. |
||||
|
* |
||||
|
* The int cyclesLate that the callbacks get is how many cycles late it was. |
||||
|
* So to schedule a new event on a regular basis: |
||||
|
* inside callback: |
||||
|
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") |
||||
|
*/ |
||||
|
class CoreTiming { |
||||
|
public: |
||||
|
CoreTiming(); |
||||
|
~CoreTiming(); |
||||
|
|
||||
|
CoreTiming(const CoreTiming&) = delete; |
||||
|
CoreTiming(CoreTiming&&) = delete; |
||||
|
|
||||
|
CoreTiming& operator=(const CoreTiming&) = delete; |
||||
|
CoreTiming& operator=(CoreTiming&&) = delete; |
||||
|
|
||||
|
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is |
||||
|
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed. |
||||
|
void Initialize(); |
||||
|
|
||||
|
/// Tears down all timing related functionality. |
||||
|
void Shutdown(); |
||||
|
|
||||
|
/// Schedules an event in core timing |
||||
|
void ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type, |
||||
|
u64 userdata = 0); |
||||
|
|
||||
|
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata); |
||||
|
|
||||
|
/// We only permit one event of each type in the queue at a time. |
||||
|
void RemoveEvent(const std::shared_ptr<EventType>& event_type); |
||||
|
|
||||
|
/// Returns current time in emulated CPU cycles |
||||
|
u64 GetCPUTicks() const; |
||||
|
|
||||
|
/// Returns current time in emulated in Clock cycles |
||||
|
u64 GetClockTicks() const; |
||||
|
|
||||
|
/// Returns current time in microseconds. |
||||
|
std::chrono::microseconds GetGlobalTimeUs() const; |
||||
|
|
||||
|
/// Returns current time in nanoseconds. |
||||
|
std::chrono::nanoseconds GetGlobalTimeNs() const; |
||||
|
|
||||
|
private: |
||||
|
struct Event; |
||||
|
|
||||
|
/// Clear all pending events. This should ONLY be done on exit. |
||||
|
void ClearPendingEvents(); |
||||
|
|
||||
|
static void ThreadEntry(CoreTiming& instance); |
||||
|
void Advance(); |
||||
|
|
||||
|
sys_time_point start_time; |
||||
|
|
||||
|
u64 global_timer = 0; |
||||
|
|
||||
|
std::chrono::nanoseconds start_point; |
||||
|
|
||||
|
// The queue is a min-heap using std::make_heap/push_heap/pop_heap. |
||||
|
// We don't use std::priority_queue because we need to be able to serialize, unserialize and |
||||
|
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't |
||||
|
// accomodated by the standard adaptor class. |
||||
|
std::vector<Event> event_queue; |
||||
|
u64 event_fifo_id = 0; |
||||
|
|
||||
|
std::shared_ptr<EventType> ev_lost; |
||||
|
bool is_set = false; |
||||
|
std::condition_variable condvar; |
||||
|
std::mutex inner_mutex; |
||||
|
std::unique_ptr<std::thread> timer_thread; |
||||
|
std::atomic<bool> shutting_down{}; |
||||
|
}; |
||||
|
|
||||
|
/// Creates a core timing event with the given name and callback. |
||||
|
/// |
||||
|
/// @param name The name of the core timing event to create. |
||||
|
/// @param callback The callback to execute for the event. |
||||
|
/// |
||||
|
/// @returns An EventType instance representing the created event. |
||||
|
/// |
||||
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback); |
||||
|
|
||||
|
} // namespace Core::Timing |
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue