4 changed files with 243 additions and 0 deletions
-
1src/common/CMakeLists.txt
-
111src/common/ring_buffer.h
-
1src/tests/CMakeLists.txt
-
130src/tests/common/ring_buffer.cpp
@ -0,0 +1,111 @@ |
|||
// Copyright 2018 yuzu emulator team |
|||
// Licensed under GPLv2 or any later version |
|||
// Refer to the license.txt file included. |
|||
|
|||
#pragma once |
|||
|
|||
#include <algorithm> |
|||
#include <array> |
|||
#include <atomic> |
|||
#include <cstddef> |
|||
#include <cstring> |
|||
#include <type_traits> |
|||
#include <vector> |
|||
#include "common/common_types.h" |
|||
|
|||
namespace Common { |
|||
|
|||
/// SPSC ring buffer |
|||
/// @tparam T Element type |
|||
/// @tparam capacity Number of slots in ring buffer |
|||
/// @tparam granularity Slot size in terms of number of elements |
|||
template <typename T, size_t capacity, size_t granularity = 1> |
|||
class RingBuffer { |
|||
/// A "slot" is made of `granularity` elements of `T`. |
|||
static constexpr size_t slot_size = granularity * sizeof(T); |
|||
// T must be safely memcpy-able and have a trivial default constructor. |
|||
static_assert(std::is_trivial_v<T>); |
|||
// Ensure capacity is sensible. |
|||
static_assert(capacity < std::numeric_limits<size_t>::max() / 2 / granularity); |
|||
static_assert((capacity & (capacity - 1)) == 0, "capacity must be a power of two"); |
|||
// Ensure lock-free. |
|||
static_assert(std::atomic<size_t>::is_always_lock_free); |
|||
|
|||
public: |
|||
/// Pushes slots into the ring buffer |
|||
/// @param new_slots Pointer to the slots to push |
|||
/// @param slot_count Number of slots to push |
|||
/// @returns The number of slots actually pushed |
|||
size_t Push(const void* new_slots, size_t slot_count) { |
|||
const size_t write_index = m_write_index.load(); |
|||
const size_t slots_free = capacity + m_read_index.load() - write_index; |
|||
const size_t push_count = std::min(slot_count, slots_free); |
|||
|
|||
const size_t pos = write_index % capacity; |
|||
const size_t first_copy = std::min(capacity - pos, push_count); |
|||
const size_t second_copy = push_count - first_copy; |
|||
|
|||
const char* in = static_cast<const char*>(new_slots); |
|||
std::memcpy(m_data.data() + pos * granularity, in, first_copy * slot_size); |
|||
in += first_copy * slot_size; |
|||
std::memcpy(m_data.data(), in, second_copy * slot_size); |
|||
|
|||
m_write_index.store(write_index + push_count); |
|||
|
|||
return push_count; |
|||
} |
|||
|
|||
size_t Push(const std::vector<T>& input) { |
|||
return Push(input.data(), input.size()); |
|||
} |
|||
|
|||
/// Pops slots from the ring buffer |
|||
/// @param output Where to store the popped slots |
|||
/// @param max_slots Maximum number of slots to pop |
|||
/// @returns The number of slots actually popped |
|||
size_t Pop(void* output, size_t max_slots = ~size_t(0)) { |
|||
const size_t read_index = m_read_index.load(); |
|||
const size_t slots_filled = m_write_index.load() - read_index; |
|||
const size_t pop_count = std::min(slots_filled, max_slots); |
|||
|
|||
const size_t pos = read_index % capacity; |
|||
const size_t first_copy = std::min(capacity - pos, pop_count); |
|||
const size_t second_copy = pop_count - first_copy; |
|||
|
|||
char* out = static_cast<char*>(output); |
|||
std::memcpy(out, m_data.data() + pos * granularity, first_copy * slot_size); |
|||
out += first_copy * slot_size; |
|||
std::memcpy(out, m_data.data(), second_copy * slot_size); |
|||
|
|||
m_read_index.store(read_index + pop_count); |
|||
|
|||
return pop_count; |
|||
} |
|||
|
|||
std::vector<T> Pop(size_t max_slots = ~size_t(0)) { |
|||
std::vector<T> out(std::min(max_slots, capacity) * granularity); |
|||
const size_t count = Pop(out.data(), out.size() / granularity); |
|||
out.resize(count * granularity); |
|||
return out; |
|||
} |
|||
|
|||
/// @returns Number of slots used |
|||
size_t Size() const { |
|||
return m_write_index.load() - m_read_index.load(); |
|||
} |
|||
|
|||
/// @returns Maximum size of ring buffer |
|||
constexpr size_t Capacity() const { |
|||
return capacity; |
|||
} |
|||
|
|||
private: |
|||
// It is important to align the below variables for performance reasons: |
|||
// Having them on the same cache-line would result in false-sharing between them. |
|||
alignas(128) std::atomic<size_t> m_read_index{0}; |
|||
alignas(128) std::atomic<size_t> m_write_index{0}; |
|||
|
|||
std::array<T, granularity * capacity> m_data; |
|||
}; |
|||
|
|||
} // namespace Common |
|||
@ -0,0 +1,130 @@ |
|||
// Copyright 2018 yuzu emulator team
|
|||
// Licensed under GPLv2 or any later version
|
|||
// Refer to the license.txt file included.
|
|||
|
|||
#include <algorithm>
|
|||
#include <array>
|
|||
#include <cstddef>
|
|||
#include <numeric>
|
|||
#include <thread>
|
|||
#include <vector>
|
|||
#include <catch2/catch.hpp>
|
|||
#include "common/ring_buffer.h"
|
|||
|
|||
namespace Common { |
|||
|
|||
TEST_CASE("RingBuffer: Basic Tests", "[common]") { |
|||
RingBuffer<char, 4, 1> buf; |
|||
|
|||
// Pushing values into a ring buffer with space should succeed.
|
|||
for (size_t i = 0; i < 4; i++) { |
|||
const char elem = static_cast<char>(i); |
|||
const size_t count = buf.Push(&elem, 1); |
|||
REQUIRE(count == 1); |
|||
} |
|||
|
|||
REQUIRE(buf.Size() == 4); |
|||
|
|||
// Pushing values into a full ring buffer should fail.
|
|||
{ |
|||
const char elem = static_cast<char>(42); |
|||
const size_t count = buf.Push(&elem, 1); |
|||
REQUIRE(count == 0); |
|||
} |
|||
|
|||
REQUIRE(buf.Size() == 4); |
|||
|
|||
// Popping multiple values from a ring buffer with values should succeed.
|
|||
{ |
|||
const std::vector<char> popped = buf.Pop(2); |
|||
REQUIRE(popped.size() == 2); |
|||
REQUIRE(popped[0] == 0); |
|||
REQUIRE(popped[1] == 1); |
|||
} |
|||
|
|||
REQUIRE(buf.Size() == 2); |
|||
|
|||
// Popping a single value from a ring buffer with values should succeed.
|
|||
{ |
|||
const std::vector<char> popped = buf.Pop(1); |
|||
REQUIRE(popped.size() == 1); |
|||
REQUIRE(popped[0] == 2); |
|||
} |
|||
|
|||
REQUIRE(buf.Size() == 1); |
|||
|
|||
// Pushing more values than space available should partially suceed.
|
|||
{ |
|||
std::vector<char> to_push(6); |
|||
std::iota(to_push.begin(), to_push.end(), 88); |
|||
const size_t count = buf.Push(to_push); |
|||
REQUIRE(count == 3); |
|||
} |
|||
|
|||
REQUIRE(buf.Size() == 4); |
|||
|
|||
// Doing an unlimited pop should pop all values.
|
|||
{ |
|||
const std::vector<char> popped = buf.Pop(); |
|||
REQUIRE(popped.size() == 4); |
|||
REQUIRE(popped[0] == 3); |
|||
REQUIRE(popped[1] == 88); |
|||
REQUIRE(popped[2] == 89); |
|||
REQUIRE(popped[3] == 90); |
|||
} |
|||
|
|||
REQUIRE(buf.Size() == 0); |
|||
} |
|||
|
|||
TEST_CASE("RingBuffer: Threaded Test", "[common]") { |
|||
RingBuffer<char, 4, 2> buf; |
|||
const char seed = 42; |
|||
const size_t count = 1000000; |
|||
size_t full = 0; |
|||
size_t empty = 0; |
|||
|
|||
const auto next_value = [](std::array<char, 2>& value) { |
|||
value[0] += 1; |
|||
value[1] += 2; |
|||
}; |
|||
|
|||
std::thread producer{[&] { |
|||
std::array<char, 2> value = {seed, seed}; |
|||
size_t i = 0; |
|||
while (i < count) { |
|||
if (const size_t c = buf.Push(&value[0], 1); c > 0) { |
|||
REQUIRE(c == 1); |
|||
i++; |
|||
next_value(value); |
|||
} else { |
|||
full++; |
|||
std::this_thread::yield(); |
|||
} |
|||
} |
|||
}}; |
|||
|
|||
std::thread consumer{[&] { |
|||
std::array<char, 2> value = {seed, seed}; |
|||
size_t i = 0; |
|||
while (i < count) { |
|||
if (const std::vector<char> v = buf.Pop(1); v.size() > 0) { |
|||
REQUIRE(v.size() == 2); |
|||
REQUIRE(v[0] == value[0]); |
|||
REQUIRE(v[1] == value[1]); |
|||
i++; |
|||
next_value(value); |
|||
} else { |
|||
empty++; |
|||
std::this_thread::yield(); |
|||
} |
|||
} |
|||
}}; |
|||
|
|||
producer.join(); |
|||
consumer.join(); |
|||
|
|||
REQUIRE(buf.Size() == 0); |
|||
printf("RingBuffer: Threaded Test: full: %zu, empty: %zu\n", full, empty); |
|||
} |
|||
|
|||
} // namespace Common
|
|||
Write
Preview
Loading…
Cancel
Save
Reference in new issue