From 470214412b4d67d51219461634c28120bccb15b8 Mon Sep 17 00:00:00 2001 From: DraVee Date: Sun, 26 Oct 2025 02:59:51 +0100 Subject: [PATCH] [cmake] sse2neon: vendor it! (#2817) sse2neon: Revert to "DLTcollab/sse2neon@66267b52fd74951d8c224a4ed8baad4102c3cfd7" 2024-01-30 21:15:29 +0800 Optimize CRC intrinisics for targets lacking of CRC extension github.com/DLTcollab/sse2neon/commit/66267b52fd74951d8c224a4ed8baad4102c3cfd7 * superseed #107 Signed-off-by: Caio Oliveira Reviewed-on: https://git.eden-emu.dev/eden-emu/eden/pulls/2817 Reviewed-by: Maufeat Reviewed-by: MaranBr Co-authored-by: DraVee Co-committed-by: DraVee --- ...-support-for-clang-cl-on-Windows-633.patch | 129 + CMakeLists.txt | 3 + externals/CMakeLists.txt | 3 +- externals/cpmfile.json | 9 + externals/sse2neon/sse2neon.h | 9285 ----------------- 5 files changed, 143 insertions(+), 9286 deletions(-) create mode 100644 .patch/sse2neon/0001-Add-support-for-clang-cl-on-Windows-633.patch delete mode 100755 externals/sse2neon/sse2neon.h diff --git a/.patch/sse2neon/0001-Add-support-for-clang-cl-on-Windows-633.patch b/.patch/sse2neon/0001-Add-support-for-clang-cl-on-Windows-633.patch new file mode 100644 index 0000000000..cf86707355 --- /dev/null +++ b/.patch/sse2neon/0001-Add-support-for-clang-cl-on-Windows-633.patch @@ -0,0 +1,129 @@ +From d765ebed3598ddfd7167fc546474626ac5ef9498 Mon Sep 17 00:00:00 2001 +From: Anthony Roberts +Date: Fri, 2 Aug 2024 16:55:57 +0100 +Subject: [PATCH] Add support for clang-cl on Windows (#633) + +This commit adds support for clang-cl (clang, pretending to be MSVC) to +SSE2NEON on Windows ARM64 platforms. This change is part of some Blender +work, as using clang-cl provides a ~20-40% speedup compared to MSVC. + +Compiled with the following command line (via a VS2022 Native ARM64 Tools +CMD window): + msbuild sse2neon.vcxproj /p:Configuration=Release /p:CLToolExe=clang-cl.exe + /p:CLToolPath="C:\Program Files\LLVM\bin\" + +Known failures in test suite: + Test mm_cvttpd_epi32 + Test rdtsc + +Co-authored-by: Anthony Roberts +--- + sse2neon.h | 22 +++++++++++----------- + 1 file changed, 11 insertions(+), 11 deletions(-) + +diff --git a/sse2neon.h b/sse2neon.h +index 56254b5..76cf8e3 100644 +--- a/sse2neon.h ++++ b/sse2neon.h +@@ -180,7 +180,7 @@ + } + + /* Compiler barrier */ +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + #define SSE2NEON_BARRIER() _ReadWriteBarrier() + #else + #define SSE2NEON_BARRIER() \ +@@ -856,7 +856,7 @@ FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) + { + poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); + poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + __n64 a1 = {a}, b1 = {b}; + return vreinterpretq_u64_p128(vmull_p64(a1, b1)); + #else +@@ -1767,7 +1767,7 @@ FORCE_INLINE void _mm_free(void *addr) + FORCE_INLINE uint64_t _sse2neon_get_fpcr(void) + { + uint64_t value; +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + value = _ReadStatusReg(ARM64_FPCR); + #else + __asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */ +@@ -1777,7 +1777,7 @@ FORCE_INLINE uint64_t _sse2neon_get_fpcr(void) + + FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value) + { +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + _WriteStatusReg(ARM64_FPCR, value); + #else + __asm__ __volatile__("msr FPCR, %0" ::"r"(value)); /* write */ +@@ -2246,7 +2246,7 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) + FORCE_INLINE void _mm_prefetch(char const *p, int i) + { + (void) i; +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + switch (i) { + case _MM_HINT_NTA: + __prefetch2(p, 1); +@@ -4817,7 +4817,7 @@ FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) + // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause + FORCE_INLINE void _mm_pause(void) + { +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + __isb(_ARM64_BARRIER_SY); + #else + __asm__ __volatile__("isb\n"); +@@ -5713,7 +5713,7 @@ FORCE_INLINE __m128d _mm_undefined_pd(void) + #pragma GCC diagnostic ignored "-Wuninitialized" + #endif + __m128d a; +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + a = _mm_setzero_pd(); + #endif + return a; +@@ -8127,7 +8127,7 @@ FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) + + FORCE_INLINE int _sse2neon_clz(unsigned int x) + { +-#ifdef _MSC_VER ++#if defined(_MSC_VER) && !defined(__clang__) + unsigned long cnt = 0; + if (_BitScanReverse(&cnt, x)) + return 31 - cnt; +@@ -8139,7 +8139,7 @@ FORCE_INLINE int _sse2neon_clz(unsigned int x) + + FORCE_INLINE int _sse2neon_ctz(unsigned int x) + { +-#ifdef _MSC_VER ++#if defined(_MSC_VER) && !defined(__clang__) + unsigned long cnt = 0; + if (_BitScanForward(&cnt, x)) + return cnt; +@@ -9055,7 +9055,7 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) + // AESE does ShiftRows and SubBytes on A + uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)); + +-#ifndef _MSC_VER ++#if !defined(_MSC_VER) || defined(__clang__) + uint8x16_t dest = { + // Undo ShiftRows step from AESE and extract X1 and X3 + u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1) +@@ -9242,7 +9242,7 @@ FORCE_INLINE uint64_t _rdtsc(void) + * bits wide and it is attributed with the flag 'cap_user_time_short' + * is true. + */ +-#if defined(_MSC_VER) ++#if defined(_MSC_VER) && !defined(__clang__) + val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2)); + #else + __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); +-- +2.48.1 + diff --git a/CMakeLists.txt b/CMakeLists.txt index 03a7d2d152..e5e97c32d5 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -590,6 +590,9 @@ find_package(VulkanUtilityLibraries) find_package(SimpleIni) find_package(SPIRV-Tools) find_package(sirit) +if (ARCHITECTURE_arm64) + find_package(sse2neon) +endif() if (ARCHITECTURE_x86 OR ARCHITECTURE_x86_64) find_package(xbyak) diff --git a/externals/CMakeLists.txt b/externals/CMakeLists.txt index 43778118d8..4a358f2212 100644 --- a/externals/CMakeLists.txt +++ b/externals/CMakeLists.txt @@ -402,6 +402,7 @@ endif() # sse2neon if (ARCHITECTURE_arm64 AND NOT TARGET sse2neon) + AddJsonPackage(sse2neon) add_library(sse2neon INTERFACE) - target_include_directories(sse2neon INTERFACE sse2neon) + target_include_directories(sse2neon INTERFACE ${sse2neon_SOURCE_DIR}) endif() diff --git a/externals/cpmfile.json b/externals/cpmfile.json index 6056a5be24..c46404986c 100644 --- a/externals/cpmfile.json +++ b/externals/cpmfile.json @@ -210,5 +210,14 @@ "key": "steamdeck", "bundled": true, "skip_updates": "true" + }, + "sse2neon": { + "repo": "DLTcollab/sse2neon", + "sha": "66267b52fd", + "hash": "3aed8676e1b8c428acb076464663e3968a721457b08710a7c5f8df2fbdaa5601053c1606169a55e987e7a58dd17e3cc3b7fbf953aa891c5ac5f8ce2941862e4b", + "download_only": "true", + "patches": [ + "0001-Add-support-for-clang-cl-on-Windows-633.patch" + ] } } diff --git a/externals/sse2neon/sse2neon.h b/externals/sse2neon/sse2neon.h deleted file mode 100755 index 67ad0ae6f8..0000000000 --- a/externals/sse2neon/sse2neon.h +++ /dev/null @@ -1,9285 +0,0 @@ -// SPDX-FileCopyrightText: Copyright 2015-2024 SSE2NEON Contributors -// SPDX-License-Identifier: MIT - -#ifndef SSE2NEON_H -#define SSE2NEON_H - -/* - * sse2neon is freely redistributable under the MIT License. - * - * Copyright (c) 2015-2024 SSE2NEON Contributors. - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in - * all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -// This header file provides a simple API translation layer -// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions -// -// Contributors to this work are: -// John W. Ratcliff -// Brandon Rowlett -// Ken Fast -// Eric van Beurden -// Alexander Potylitsin -// Hasindu Gamaarachchi -// Jim Huang -// Mark Cheng -// Malcolm James MacLeod -// Devin Hussey (easyaspi314) -// Sebastian Pop -// Developer Ecosystem Engineering -// Danila Kutenin -// François Turban (JishinMaster) -// Pei-Hsuan Hung -// Yang-Hao Yuan -// Syoyo Fujita -// Brecht Van Lommel -// Jonathan Hue -// Cuda Chen -// Aymen Qader -// Anthony Roberts - -/* Tunable configurations */ - -/* Enable precise implementation of math operations - * This would slow down the computation a bit, but gives consistent result with - * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result) - */ -/* _mm_min|max_ps|ss|pd|sd */ -#ifndef SSE2NEON_PRECISE_MINMAX -#define SSE2NEON_PRECISE_MINMAX (0) -#endif -/* _mm_rcp_ps and _mm_div_ps */ -#ifndef SSE2NEON_PRECISE_DIV -#define SSE2NEON_PRECISE_DIV (0) -#endif -/* _mm_sqrt_ps and _mm_rsqrt_ps */ -#ifndef SSE2NEON_PRECISE_SQRT -#define SSE2NEON_PRECISE_SQRT (0) -#endif -/* _mm_dp_pd */ -#ifndef SSE2NEON_PRECISE_DP -#define SSE2NEON_PRECISE_DP (0) -#endif - -/* Enable inclusion of windows.h on MSVC platforms - * This makes _mm_clflush functional on windows, as there is no builtin. - */ -#ifndef SSE2NEON_INCLUDE_WINDOWS_H -#define SSE2NEON_INCLUDE_WINDOWS_H (0) -#endif - -/* compiler specific definitions */ -#if defined(__GNUC__) || defined(__clang__) -#pragma push_macro("FORCE_INLINE") -#pragma push_macro("ALIGN_STRUCT") -#define FORCE_INLINE static inline __attribute__((always_inline)) -#define ALIGN_STRUCT(x) __attribute__((aligned(x))) -#define _sse2neon_likely(x) __builtin_expect(!!(x), 1) -#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0) -#elif defined(_MSC_VER) -#if _MSVC_TRADITIONAL -#error Using the traditional MSVC preprocessor is not supported! Use /Zc:preprocessor instead. -#endif -#ifndef FORCE_INLINE -#define FORCE_INLINE static inline -#endif -#ifndef ALIGN_STRUCT -#define ALIGN_STRUCT(x) __declspec(align(x)) -#endif -#define _sse2neon_likely(x) (x) -#define _sse2neon_unlikely(x) (x) -#else -#pragma message("Macro name collisions may happen with unsupported compilers.") -#endif - -#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 10 -#warning "GCC versions earlier than 10 are not supported." -#endif - -/* C language does not allow initializing a variable with a function call. */ -#ifdef __cplusplus -#define _sse2neon_const static const -#else -#define _sse2neon_const const -#endif - -#include -#include - -#if defined(_WIN32) -/* Definitions for _mm_{malloc,free} are provided by - * from both MinGW-w64 and MSVC. - */ -#define SSE2NEON_ALLOC_DEFINED -#endif - -/* If using MSVC */ -#ifdef _MSC_VER -#include -#if SSE2NEON_INCLUDE_WINDOWS_H -#include -#include -#endif - -#if !defined(__cplusplus) -#error SSE2NEON only supports C++ compilation with this compiler -#endif - -#ifdef SSE2NEON_ALLOC_DEFINED -#include -#endif - -#if (defined(_M_AMD64) || defined(__x86_64__)) || \ - (defined(_M_ARM64) || defined(__arm64__)) -#define SSE2NEON_HAS_BITSCAN64 -#endif -#endif - -#if defined(__GNUC__) || defined(__clang__) -#define _sse2neon_define0(type, s, body) \ - __extension__({ \ - type _a = (s); \ - body \ - }) -#define _sse2neon_define1(type, s, body) \ - __extension__({ \ - type _a = (s); \ - body \ - }) -#define _sse2neon_define2(type, a, b, body) \ - __extension__({ \ - type _a = (a), _b = (b); \ - body \ - }) -#define _sse2neon_return(ret) (ret) -#else -#define _sse2neon_define0(type, a, body) [=](type _a) { body }(a) -#define _sse2neon_define1(type, a, body) [](type _a) { body }(a) -#define _sse2neon_define2(type, a, b, body) \ - [](type _a, type _b) { body }((a), (b)) -#define _sse2neon_return(ret) return ret -#endif - -#define _sse2neon_init(...) \ - { \ - __VA_ARGS__ \ - } - -/* Compiler barrier */ -#if defined(_MSC_VER) && !defined(__clang__) -#define SSE2NEON_BARRIER() _ReadWriteBarrier() -#else -#define SSE2NEON_BARRIER() \ - do { \ - __asm__ __volatile__("" ::: "memory"); \ - (void) 0; \ - } while (0) -#endif - -/* Memory barriers - * __atomic_thread_fence does not include a compiler barrier; instead, - * the barrier is part of __atomic_load/__atomic_store's "volatile-like" - * semantics. - */ -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) -#include -#endif - -FORCE_INLINE void _sse2neon_smp_mb(void) -{ - SSE2NEON_BARRIER(); -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ - !defined(__STDC_NO_ATOMICS__) - atomic_thread_fence(memory_order_seq_cst); -#elif defined(__GNUC__) || defined(__clang__) - __atomic_thread_fence(__ATOMIC_SEQ_CST); -#else /* MSVC */ - __dmb(_ARM64_BARRIER_ISH); -#endif -} - -/* Architecture-specific build options */ -/* FIXME: #pragma GCC push_options is only available on GCC */ -#if defined(__GNUC__) -#if defined(__arm__) && __ARM_ARCH == 7 -/* According to ARM C Language Extensions Architecture specification, - * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON) - * architecture supported. - */ -#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) -#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON." -#endif -#if !defined(__clang__) -#pragma GCC push_options -#pragma GCC target("fpu=neon") -#endif -#elif defined(__aarch64__) || defined(_M_ARM64) -#if !defined(__clang__) && !defined(_MSC_VER) -#pragma GCC push_options -#pragma GCC target("+simd") -#endif -#elif __ARM_ARCH == 8 -#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) -#error \ - "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." -#endif -#if !defined(__clang__) && !defined(_MSC_VER) -#pragma GCC push_options -#endif -#else -#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A." -#endif -#endif - -#include -#if (!defined(__aarch64__) && !defined(_M_ARM64)) && (__ARM_ARCH == 8) -#if defined __has_include && __has_include() -#include -#endif -#endif - -/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD - * and other Arm microarchitectures use. - * From sysctl -a on Apple M1: - * hw.cachelinesize: 128 - */ -#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) -#define SSE2NEON_CACHELINE_SIZE 128 -#else -#define SSE2NEON_CACHELINE_SIZE 64 -#endif - -/* Rounding functions require either Aarch64 instructions or libm fallback */ -#if !defined(__aarch64__) && !defined(_M_ARM64) -#include -#endif - -/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only - * or even not accessible in user mode. - * To write or access to these registers in user mode, - * we have to perform syscall instead. - */ -#if (!defined(__aarch64__) && !defined(_M_ARM64)) -#include -#endif - -/* "__has_builtin" can be used to query support for built-in functions - * provided by gcc/clang and other compilers that support it. - */ -#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */ -/* Compatibility with gcc <= 9 */ -#if defined(__GNUC__) && (__GNUC__ <= 9) -#define __has_builtin(x) HAS##x -#define HAS__builtin_popcount 1 -#define HAS__builtin_popcountll 1 - -// __builtin_shuffle introduced in GCC 4.7.0 -#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) -#define HAS__builtin_shuffle 1 -#else -#define HAS__builtin_shuffle 0 -#endif - -#define HAS__builtin_shufflevector 0 -#define HAS__builtin_nontemporal_store 0 -#else -#define __has_builtin(x) 0 -#endif -#endif - -/** - * MACRO for shuffle parameter for _mm_shuffle_ps(). - * Argument fp3 is a digit[0123] that represents the fp from argument "b" - * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same - * for fp2 in result. fp1 is a digit[0123] that represents the fp from - * argument "a" of mm_shuffle_ps that will be places in fp1 of result. - * fp0 is the same for fp0 of result. - */ -#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ - (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) - -#if __has_builtin(__builtin_shufflevector) -#define _sse2neon_shuffle(type, a, b, ...) \ - __builtin_shufflevector(a, b, __VA_ARGS__) -#elif __has_builtin(__builtin_shuffle) -#define _sse2neon_shuffle(type, a, b, ...) \ - __extension__({ \ - type tmp = {__VA_ARGS__}; \ - __builtin_shuffle(a, b, tmp); \ - }) -#endif - -#ifdef _sse2neon_shuffle -#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) -#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) -#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) -#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) -#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) -#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) -#endif - -/* Rounding mode macros. */ -#define _MM_FROUND_TO_NEAREST_INT 0x00 -#define _MM_FROUND_TO_NEG_INF 0x01 -#define _MM_FROUND_TO_POS_INF 0x02 -#define _MM_FROUND_TO_ZERO 0x03 -#define _MM_FROUND_CUR_DIRECTION 0x04 -#define _MM_FROUND_NO_EXC 0x08 -#define _MM_FROUND_RAISE_EXC 0x00 -#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) -#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) -#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) -#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) -#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) -#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) -#define _MM_ROUND_NEAREST 0x0000 -#define _MM_ROUND_DOWN 0x2000 -#define _MM_ROUND_UP 0x4000 -#define _MM_ROUND_TOWARD_ZERO 0x6000 -/* Flush zero mode macros. */ -#define _MM_FLUSH_ZERO_MASK 0x8000 -#define _MM_FLUSH_ZERO_ON 0x8000 -#define _MM_FLUSH_ZERO_OFF 0x0000 -/* Denormals are zeros mode macros. */ -#define _MM_DENORMALS_ZERO_MASK 0x0040 -#define _MM_DENORMALS_ZERO_ON 0x0040 -#define _MM_DENORMALS_ZERO_OFF 0x0000 - -/* indicate immediate constant argument in a given range */ -#define __constrange(a, b) const - -/* A few intrinsics accept traditional data types like ints or floats, but - * most operate on data types that are specific to SSE. - * If a vector type ends in d, it contains doubles, and if it does not have - * a suffix, it contains floats. An integer vector type can contain any type - * of integer, from chars to shorts to unsigned long longs. - */ -typedef int64x1_t __m64; -typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */ -// On ARM 32-bit architecture, the float64x2_t is not supported. -// The data type __m128d should be represented in a different way for related -// intrinsic conversion. -#if defined(__aarch64__) || defined(_M_ARM64) -typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */ -#else -typedef float32x4_t __m128d; -#endif -typedef int64x2_t __m128i; /* 128-bit vector containing integers */ - -// __int64 is defined in the Intrinsics Guide which maps to different datatype -// in different data model -#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) -#if (defined(__x86_64__) || defined(__i386__)) -#define __int64 long long -#else -#define __int64 int64_t -#endif -#endif - -/* type-safe casting between types */ - -#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x) -#define vreinterpretq_m128_f32(x) (x) -#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x) - -#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x) -#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x) -#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x) -#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x) - -#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x) -#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x) -#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x) -#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x) - -#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x) -#define vreinterpretq_f32_m128(x) (x) -#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x) - -#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x) -#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x) -#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x) -#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x) - -#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x) -#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x) -#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x) -#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x) - -#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x) -#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x) -#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x) -#define vreinterpretq_m128i_s64(x) (x) - -#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x) -#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x) -#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x) -#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x) - -#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x) -#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x) - -#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x) -#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x) -#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x) -#define vreinterpretq_s64_m128i(x) (x) - -#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x) -#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x) -#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x) -#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x) - -#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x) -#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x) -#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x) -#define vreinterpret_m64_s64(x) (x) - -#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x) -#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x) -#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x) -#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x) - -#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x) -#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x) -#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x) - -#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x) -#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x) -#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x) -#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x) - -#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x) -#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x) -#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x) -#define vreinterpret_s64_m64(x) (x) - -#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x) - -#if defined(__aarch64__) || defined(_M_ARM64) -#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x) -#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x) - -#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x) - -#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x) -#define vreinterpretq_m128d_f64(x) (x) - -#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x) - -#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x) -#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x) - -#define vreinterpretq_f64_m128d(x) (x) -#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x) -#else -#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x) -#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x) - -#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x) -#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x) - -#define vreinterpretq_m128d_f32(x) (x) - -#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x) - -#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x) -#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x) - -#define vreinterpretq_f32_m128d(x) (x) -#endif - -// A struct is defined in this header file called 'SIMDVec' which can be used -// by applications which attempt to access the contents of an __m128 struct -// directly. It is important to note that accessing the __m128 struct directly -// is bad coding practice by Microsoft: @see: -// https://learn.microsoft.com/en-us/cpp/cpp/m128 -// -// However, some legacy source code may try to access the contents of an __m128 -// struct directly so the developer can use the SIMDVec as an alias for it. Any -// casting must be done manually by the developer, as you cannot cast or -// otherwise alias the base NEON data type for intrinsic operations. -// -// union intended to allow direct access to an __m128 variable using the names -// that the MSVC compiler provides. This union should really only be used when -// trying to access the members of the vector as integer values. GCC/clang -// allow native access to the float members through a simple array access -// operator (in C since 4.6, in C++ since 4.8). -// -// Ideally direct accesses to SIMD vectors should not be used since it can cause -// a performance hit. If it really is needed however, the original __m128 -// variable can be aliased with a pointer to this union and used to access -// individual components. The use of this union should be hidden behind a macro -// that is used throughout the codebase to access the members instead of always -// declaring this type of variable. -typedef union ALIGN_STRUCT(16) SIMDVec { - float m128_f32[4]; // as floats - DON'T USE. Added for convenience. - int8_t m128_i8[16]; // as signed 8-bit integers. - int16_t m128_i16[8]; // as signed 16-bit integers. - int32_t m128_i32[4]; // as signed 32-bit integers. - int64_t m128_i64[2]; // as signed 64-bit integers. - uint8_t m128_u8[16]; // as unsigned 8-bit integers. - uint16_t m128_u16[8]; // as unsigned 16-bit integers. - uint32_t m128_u32[4]; // as unsigned 32-bit integers. - uint64_t m128_u64[2]; // as unsigned 64-bit integers. -} SIMDVec; - -// casting using SIMDVec -#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n]) -#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n]) -#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n]) - -/* SSE macros */ -#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode -#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode -#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode -#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode - -// Function declaration -// SSE -FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void); -FORCE_INLINE __m128 _mm_move_ss(__m128, __m128); -FORCE_INLINE __m128 _mm_or_ps(__m128, __m128); -FORCE_INLINE __m128 _mm_set_ps1(float); -FORCE_INLINE __m128 _mm_setzero_ps(void); -// SSE2 -FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i); -FORCE_INLINE __m128i _mm_castps_si128(__m128); -FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i); -FORCE_INLINE __m128i _mm_cvtps_epi32(__m128); -FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d); -FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i); -FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int); -FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t); -FORCE_INLINE __m128d _mm_set_pd(double, double); -FORCE_INLINE __m128i _mm_set1_epi32(int); -FORCE_INLINE __m128i _mm_setzero_si128(void); -// SSE4.1 -FORCE_INLINE __m128d _mm_ceil_pd(__m128d); -FORCE_INLINE __m128 _mm_ceil_ps(__m128); -FORCE_INLINE __m128d _mm_floor_pd(__m128d); -FORCE_INLINE __m128 _mm_floor_ps(__m128); -FORCE_INLINE __m128d _mm_round_pd(__m128d, int); -FORCE_INLINE __m128 _mm_round_ps(__m128, int); -// SSE4.2 -FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); - -/* Backwards compatibility for compilers with lack of specific type support */ - -// Older gcc does not define vld1q_u8_x4 type -#if defined(__GNUC__) && !defined(__clang__) && \ - ((__GNUC__ <= 13 && defined(__arm__)) || \ - (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ - (__GNUC__ <= 9 && defined(__aarch64__))) -FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) -{ - uint8x16x4_t ret; - ret.val[0] = vld1q_u8(p + 0); - ret.val[1] = vld1q_u8(p + 16); - ret.val[2] = vld1q_u8(p + 32); - ret.val[3] = vld1q_u8(p + 48); - return ret; -} -#else -// Wraps vld1q_u8_x4 -FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) -{ - return vld1q_u8_x4(p); -} -#endif - -#if !defined(__aarch64__) && !defined(_M_ARM64) -/* emulate vaddv u8 variant */ -FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) -{ - const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); - return vget_lane_u8(vreinterpret_u8_u64(v1), 0); -} -#else -// Wraps vaddv_u8 -FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) -{ - return vaddv_u8(v8); -} -#endif - -#if !defined(__aarch64__) && !defined(_M_ARM64) -/* emulate vaddvq u8 variant */ -FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) -{ - uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); - uint8_t res = 0; - for (int i = 0; i < 8; ++i) - res += tmp[i]; - return res; -} -#else -// Wraps vaddvq_u8 -FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) -{ - return vaddvq_u8(a); -} -#endif - -#if !defined(__aarch64__) && !defined(_M_ARM64) -/* emulate vaddvq u16 variant */ -FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) -{ - uint32x4_t m = vpaddlq_u16(a); - uint64x2_t n = vpaddlq_u32(m); - uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); - - return vget_lane_u32((uint32x2_t) o, 0); -} -#else -// Wraps vaddvq_u16 -FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) -{ - return vaddvq_u16(a); -} -#endif - -/* Function Naming Conventions - * The naming convention of SSE intrinsics is straightforward. A generic SSE - * intrinsic function is given as follows: - * _mm__ - * - * The parts of this format are given as follows: - * 1. describes the operation performed by the intrinsic - * 2. identifies the data type of the function's primary arguments - * - * This last part, , is a little complicated. It identifies the - * content of the input values, and can be set to any of the following values: - * + ps - vectors contain floats (ps stands for packed single-precision) - * + pd - vectors contain doubles (pd stands for packed double-precision) - * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit - * signed integers - * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit - * unsigned integers - * + si128 - unspecified 128-bit vector or 256-bit vector - * + m128/m128i/m128d - identifies input vector types when they are different - * than the type of the returned vector - * - * For example, _mm_setzero_ps. The _mm implies that the function returns - * a 128-bit vector. The _ps at the end implies that the argument vectors - * contain floats. - * - * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8) - * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits - * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); - * // Set packed 8-bit integers - * // 128 bits, 16 chars, per 8 bits - * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11, - * 4, 5, 12, 13, 6, 7, 14, 15); - * // Shuffle packed 8-bit integers - * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb - */ - -/* Constants for use with _mm_prefetch. */ -enum _mm_hint { - _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ - _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ - _MM_HINT_T1 = 2, /* load data to L2 cache only */ - _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ -}; - -// The bit field mapping to the FPCR(floating-point control register) -typedef struct { - uint16_t res0; - uint8_t res1 : 6; - uint8_t bit22 : 1; - uint8_t bit23 : 1; - uint8_t bit24 : 1; - uint8_t res2 : 7; -#if defined(__aarch64__) || defined(_M_ARM64) - uint32_t res3; -#endif -} fpcr_bitfield; - -// Takes the upper 64 bits of a and places it in the low end of the result -// Takes the lower 64 bits of b and places it into the high end of the result. -FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) -{ - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); -} - -// takes the lower two 32-bit values from a and swaps them and places in high -// end of result takes the higher two 32 bit values from b and swaps them and -// places in low end of result. -FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) -{ - float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); - float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); - return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) -{ - float32x2_t a21 = vget_high_f32( - vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); - float32x2_t b03 = vget_low_f32( - vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); - return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) -{ - float32x2_t a03 = vget_low_f32( - vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); - float32x2_t b21 = vget_high_f32( - vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); - return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) -{ - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) -{ - float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) -{ - float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); - float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); - return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); -} - -// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the -// high -FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) -{ - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) -{ - float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); - float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); - return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) -{ - float32x2_t a22 = - vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); - float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); - return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) -{ - float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); - float32x2_t b22 = - vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); - return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) -{ - float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - float32x2_t a22 = - vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); - float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/ - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) -{ - float32x2_t a33 = - vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); - float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); - return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) -{ - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); - float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); - float32x2_t b20 = vset_lane_f32(b2, b00, 1); - return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) -{ - float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); - float32_t b2 = vgetq_lane_f32(b, 2); - float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); - float32x2_t b20 = vset_lane_f32(b2, b00, 1); - return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); -} - -FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) -{ - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32_t b2 = vgetq_lane_f32(b, 2); - float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); - float32x2_t b20 = vset_lane_f32(b2, b00, 1); - return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); -} - -// For MSVC, we check only if it is ARM64, as every single ARM64 processor -// supported by WoA has crypto extensions. If this changes in the future, -// this can be verified via the runtime-only method of: -// IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) -#if (defined(_M_ARM64) && !defined(__clang__)) || \ - (defined(__ARM_FEATURE_CRYPTO) && \ - (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64))) -// Wraps vmull_p64 -FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) -{ - poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); - poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); -#if defined(_MSC_VER) && !defined(__clang__) - __n64 a1 = {a}, b1 = {b}; - return vreinterpretq_u64_p128(vmull_p64(a1, b1)); -#else - return vreinterpretq_u64_p128(vmull_p64(a, b)); -#endif -} -#else // ARMv7 polyfill -// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. -// -// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a -// 64-bit->128-bit polynomial multiply. -// -// It needs some work and is somewhat slow, but it is still faster than all -// known scalar methods. -// -// Algorithm adapted to C from -// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted -// from "Fast Software Polynomial Multiplication on ARM Processors Using the -// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab -// (https://hal.inria.fr/hal-01506572) -static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) -{ - poly8x8_t a = vreinterpret_p8_u64(_a); - poly8x8_t b = vreinterpret_p8_u64(_b); - - // Masks - uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), - vcreate_u8(0x00000000ffffffff)); - uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), - vcreate_u8(0x0000000000000000)); - - // Do the multiplies, rotating with vext to get all combinations - uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0 - uint8x16_t e = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1 - uint8x16_t f = - vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0 - uint8x16_t g = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2 - uint8x16_t h = - vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0 - uint8x16_t i = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3 - uint8x16_t j = - vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0 - uint8x16_t k = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4 - - // Add cross products - uint8x16_t l = veorq_u8(e, f); // L = E + F - uint8x16_t m = veorq_u8(g, h); // M = G + H - uint8x16_t n = veorq_u8(i, j); // N = I + J - - // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL - // instructions. -#if defined(__aarch64__) - uint8x16_t lm_p0 = vreinterpretq_u8_u64( - vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); - uint8x16_t lm_p1 = vreinterpretq_u8_u64( - vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); - uint8x16_t nk_p0 = vreinterpretq_u8_u64( - vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); - uint8x16_t nk_p1 = vreinterpretq_u8_u64( - vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); -#else - uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m)); - uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m)); - uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k)); - uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k)); -#endif - // t0 = (L) (P0 + P1) << 8 - // t1 = (M) (P2 + P3) << 16 - uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1); - uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32); - uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h); - - // t2 = (N) (P4 + P5) << 24 - // t3 = (K) (P6 + P7) << 32 - uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1); - uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00); - uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h); - - // De-interleave -#if defined(__aarch64__) - uint8x16_t t0 = vreinterpretq_u8_u64( - vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); - uint8x16_t t1 = vreinterpretq_u8_u64( - vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); - uint8x16_t t2 = vreinterpretq_u8_u64( - vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); - uint8x16_t t3 = vreinterpretq_u8_u64( - vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); -#else - uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h)); - uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h)); - uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h)); - uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h)); -#endif - // Shift the cross products - uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8 - uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16 - uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24 - uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32 - - // Accumulate the products - uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift); - uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift); - uint8x16_t mix = veorq_u8(d, cross1); - uint8x16_t r = veorq_u8(mix, cross2); - return vreinterpretq_u64_u8(r); -} -#endif // ARMv7 polyfill - -// C equivalent: -// __m128i _mm_shuffle_epi32_default(__m128i a, -// __constrange(0, 255) int imm) { -// __m128i ret; -// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; -// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03]; -// return ret; -// } -#define _mm_shuffle_epi32_default(a, imm) \ - vreinterpretq_m128i_s32(vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ - vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ - vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), \ - ((imm) >> 2) & 0x3), \ - vmovq_n_s32(vgetq_lane_s32( \ - vreinterpretq_s32_m128i(a), (imm) & (0x3))), \ - 1), \ - 2), \ - 3)) - -// Takes the upper 64 bits of a and places it in the low end of the result -// Takes the lower 64 bits of a and places it into the high end of the result. -FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) -{ - int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); - int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); - return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); -} - -// takes the lower two 32-bit values from a and swaps them and places in low end -// of result takes the higher two 32 bit values from a and swaps them and places -// in high end of result. -FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) -{ - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); - return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); -} - -// rotates the least significant 32 bits into the most significant 32 bits, and -// shifts the rest down -FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) -{ - return vreinterpretq_m128i_s32( - vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); -} - -// rotates the most significant 32 bits into the least significant 32 bits, and -// shifts the rest up -FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) -{ - return vreinterpretq_m128i_s32( - vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); -} - -// gets the lower 64 bits of a, and places it in the upper 64 bits -// gets the lower 64 bits of a and places it in the lower 64 bits -FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) -{ - int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); - return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); -} - -// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the -// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits -FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) -{ - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); - return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); -} - -// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the -// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and -// places it in the lower 64 bits -FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) -{ - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); -} - -FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) -{ - int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); - int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); - return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); -} - -FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) -{ - int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); -} - -FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) -{ - int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); - int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); - return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); -} - -#if defined(__aarch64__) || defined(_M_ARM64) -#define _mm_shuffle_epi32_splat(a, imm) \ - vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))) -#else -#define _mm_shuffle_epi32_splat(a, imm) \ - vreinterpretq_m128i_s32( \ - vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))) -#endif - -// NEON does not support a general purpose permute intrinsic. -// Shuffle single-precision (32-bit) floating-point elements in a using the -// control in imm8, and store the results in dst. -// -// C equivalent: -// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, -// __constrange(0, 255) int imm) { -// __m128 ret; -// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; -// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03]; -// return ret; -// } -// -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps -#define _mm_shuffle_ps_default(a, b, imm) \ - vreinterpretq_m128_f32(vsetq_lane_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \ - vsetq_lane_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \ - vsetq_lane_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \ - vmovq_n_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))), \ - 1), \ - 2), \ - 3)) - -// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8. -// Store the results in the low 64 bits of dst, with the high 64 bits being -// copied from a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16 -#define _mm_shufflelo_epi16_function(a, imm) \ - _sse2neon_define1( \ - __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \ - int16x4_t lowBits = vget_low_s16(ret); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ - 1); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \ - 2); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ - 3); \ - _sse2neon_return(vreinterpretq_m128i_s16(ret));) - -// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8. -// Store the results in the high 64 bits of dst, with the low 64 bits being -// copied from a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16 -#define _mm_shufflehi_epi16_function(a, imm) \ - _sse2neon_define1( \ - __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \ - int16x4_t highBits = vget_high_s16(ret); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ - 5); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \ - 6); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ - 7); \ - _sse2neon_return(vreinterpretq_m128i_s16(ret));) - -/* MMX */ - -//_mm_empty is a no-op on arm -FORCE_INLINE void _mm_empty(void) {} - -/* SSE */ - -// Add packed single-precision (32-bit) floating-point elements in a and b, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps -FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Add the lower single-precision (32-bit) floating-point element in a and b, -// store the result in the lower element of dst, and copy the upper 3 packed -// elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss -FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) -{ - float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); - float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); - // the upper values in the result must be the remnants of . - return vreinterpretq_m128_f32(vaddq_f32(a, value)); -} - -// Compute the bitwise AND of packed single-precision (32-bit) floating-point -// elements in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps -FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); -} - -// Compute the bitwise NOT of packed single-precision (32-bit) floating-point -// elements in a and then AND with b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps -FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - vbicq_s32(vreinterpretq_s32_m128(b), - vreinterpretq_s32_m128(a))); // *NOTE* argument swap -} - -// Average packed unsigned 16-bit integers in a and b, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 -FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) -{ - return vreinterpret_m64_u16( - vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b))); -} - -// Average packed unsigned 8-bit integers in a and b, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 -FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) -{ - return vreinterpret_m64_u8( - vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for equality, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps -FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for equality, store the result in the lower element of dst, and copy the -// upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss -FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for greater-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps -FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for greater-than-or-equal, store the result in the lower element of dst, -// and copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss -FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpge_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for greater-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps -FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for greater-than, store the result in the lower element of dst, and copy -// the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss -FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for less-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps -FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for less-than-or-equal, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss -FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmple_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for less-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps -FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for less-than, store the result in the lower element of dst, and copy the -// upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss -FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmplt_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for not-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps -FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32(vmvnq_u32( - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for not-equal, store the result in the lower element of dst, and copy the -// upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss -FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for not-greater-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps -FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32(vmvnq_u32( - vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for not-greater-than-or-equal, store the result in the lower element of -// dst, and copy the upper 3 packed elements from a to the upper elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss -FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpnge_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for not-greater-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps -FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32(vmvnq_u32( - vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for not-greater-than, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss -FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpngt_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for not-less-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps -FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32(vmvnq_u32( - vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for not-less-than-or-equal, store the result in the lower element of dst, -// and copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss -FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpnle_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// for not-less-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps -FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32(vmvnq_u32( - vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b for not-less-than, store the result in the lower element of dst, and copy -// the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss -FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpnlt_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// to see if neither is NaN, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps -// -// See also: -// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean -// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics -FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) -{ - // Note: NEON does not have ordered compare builtin - // Need to compare a eq a and b eq b to check for NaN - // Do AND of results to get final - uint32x4_t ceqaa = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t ceqbb = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b to see if neither is NaN, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss -FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpord_ps(a, b)); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b -// to see if either is NaN, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps -FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) -{ - uint32x4_t f32a = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t f32b = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b to see if either is NaN, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss -FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); -} - -// Compare the lower single-precision (32-bit) floating-point element in a and b -// for equality, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss -FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) -{ - uint32x4_t a_eq_b = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return vgetq_lane_u32(a_eq_b, 0) & 0x1; -} - -// Compare the lower single-precision (32-bit) floating-point element in a and b -// for greater-than-or-equal, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss -FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) -{ - uint32x4_t a_ge_b = - vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return vgetq_lane_u32(a_ge_b, 0) & 0x1; -} - -// Compare the lower single-precision (32-bit) floating-point element in a and b -// for greater-than, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss -FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) -{ - uint32x4_t a_gt_b = - vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return vgetq_lane_u32(a_gt_b, 0) & 0x1; -} - -// Compare the lower single-precision (32-bit) floating-point element in a and b -// for less-than-or-equal, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss -FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) -{ - uint32x4_t a_le_b = - vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return vgetq_lane_u32(a_le_b, 0) & 0x1; -} - -// Compare the lower single-precision (32-bit) floating-point element in a and b -// for less-than, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss -FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) -{ - uint32x4_t a_lt_b = - vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return vgetq_lane_u32(a_lt_b, 0) & 0x1; -} - -// Compare the lower single-precision (32-bit) floating-point element in a and b -// for not-equal, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss -FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) -{ - return !_mm_comieq_ss(a, b); -} - -// Convert packed signed 32-bit integers in b to packed single-precision -// (32-bit) floating-point elements, store the results in the lower 2 elements -// of dst, and copy the upper 2 packed elements from a to the upper elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps -FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), - vget_high_f32(vreinterpretq_f32_m128(a)))); -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi -FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - return vreinterpret_m64_s32( - vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); -#else - return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32( - vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION))))); -#endif -} - -// Convert the signed 32-bit integer b to a single-precision (32-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss -FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) -{ - return vreinterpretq_m128_f32( - vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); -} - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si -FORCE_INLINE int _mm_cvt_ss2si(__m128 a) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), - 0); -#else - float32_t data = vgetq_lane_f32( - vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); - return (int32_t) data; -#endif -} - -// Convert packed 16-bit integers in a to packed single-precision (32-bit) -// floating-point elements, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps -FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) -{ - return vreinterpretq_m128_f32( - vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a)))); -} - -// Convert packed 32-bit integers in b to packed single-precision (32-bit) -// floating-point elements, store the results in the lower 2 elements of dst, -// and copy the upper 2 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps -FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), - vget_high_f32(vreinterpretq_f32_m128(a)))); -} - -// Convert packed signed 32-bit integers in a to packed single-precision -// (32-bit) floating-point elements, store the results in the lower 2 elements -// of dst, then convert the packed signed 32-bit integers in b to -// single-precision (32-bit) floating-point element, and store the results in -// the upper 2 elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps -FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) -{ - return vreinterpretq_m128_f32(vcvtq_f32_s32( - vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)))); -} - -// Convert the lower packed 8-bit integers in a to packed single-precision -// (32-bit) floating-point elements, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps -FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) -{ - return vreinterpretq_m128_f32(vcvtq_f32_s32( - vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a)))))); -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 16-bit integers, and store the results in dst. Note: this intrinsic -// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and -// 0x7FFFFFFF. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 -FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) -{ - return vreinterpret_m64_s16( - vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 -#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 8-bit integers, and store the results in lower 4 elements of dst. -// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values -// between 0x7F and 0x7FFFFFFF. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 -FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) -{ - return vreinterpret_m64_s8(vqmovn_s16( - vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); -} - -// Convert packed unsigned 16-bit integers in a to packed single-precision -// (32-bit) floating-point elements, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps -FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) -{ - return vreinterpretq_m128_f32( - vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a)))); -} - -// Convert the lower packed unsigned 8-bit integers in a to packed -// single-precision (32-bit) floating-point elements, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps -FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) -{ - return vreinterpretq_m128_f32(vcvtq_f32_u32( - vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a)))))); -} - -// Convert the signed 32-bit integer b to a single-precision (32-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss -#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) - -// Convert the signed 64-bit integer b to a single-precision (32-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss -FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) -{ - return vreinterpretq_m128_f32( - vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); -} - -// Copy the lower single-precision (32-bit) floating-point element of a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 -FORCE_INLINE float _mm_cvtss_f32(__m128 a) -{ - return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); -} - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 -#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 64-bit integer, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 -FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); -#else - float32_t data = vgetq_lane_f32( - vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); - return (int64_t) data; -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi -FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) -{ - return vreinterpret_m64_s32( - vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))); -} - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer with truncation, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si -FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) -{ - return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 -#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer with truncation, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 -#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 64-bit integer with truncation, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 -FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) -{ - return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); -} - -// Divide packed single-precision (32-bit) floating-point elements in a by -// packed elements in b, and store the results in dst. -// Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement -// division by multiplying a by b's reciprocal before using the Newton-Raphson -// method to approximate the results. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps -FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_DIV - return vreinterpretq_m128_f32( - vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b)); - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); - // Additional Netwon-Raphson iteration for accuracy - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); - return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip)); -#endif -} - -// Divide the lower single-precision (32-bit) floating-point element in a by the -// lower single-precision (32-bit) floating-point element in b, store the result -// in the lower element of dst, and copy the upper 3 packed elements from a to -// the upper elements of dst. -// Warning: ARMv7-A does not produce the same result compared to Intel and not -// IEEE-compliant. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss -FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) -{ - float32_t value = - vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); -} - -// Extract a 16-bit integer from a, selected with imm8, and store the result in -// the lower element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 -#define _mm_extract_pi16(a, imm) \ - (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) - -// Free aligned memory that was allocated with _mm_malloc. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free -#if !defined(SSE2NEON_ALLOC_DEFINED) -FORCE_INLINE void _mm_free(void *addr) -{ - free(addr); -} -#endif - -FORCE_INLINE uint64_t _sse2neon_get_fpcr(void) -{ - uint64_t value; -#if defined(_MSC_VER) && !defined(__clang__) - value = _ReadStatusReg(ARM64_FPCR); -#else - __asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */ -#endif - return value; -} - -FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value) -{ -#if defined(_MSC_VER) && !defined(__clang__) - _WriteStatusReg(ARM64_FPCR, value); -#else - __asm__ __volatile__("msr FPCR, %0" ::"r"(value)); /* write */ -#endif -} - -// Macro: Get the flush zero bits from the MXCSR control and status register. -// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or -// _MM_FLUSH_ZERO_OFF -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE -FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode(void) -{ - union { - fpcr_bitfield field; -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) || defined(_M_ARM64) - r.value = _sse2neon_get_fpcr(); -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF; -} - -// Macro: Get the rounding mode bits from the MXCSR control and status register. -// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, -// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE -FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void) -{ - union { - fpcr_bitfield field; -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) || defined(_M_ARM64) - r.value = _sse2neon_get_fpcr(); -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - if (r.field.bit22) { - return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP; - } else { - return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST; - } -} - -// Copy a to dst, and insert the 16-bit integer i into dst at the location -// specified by imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 -#define _mm_insert_pi16(a, b, imm) \ - vreinterpret_m64_s16(vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))) - -// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point -// elements) from memory into dst. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps -FORCE_INLINE __m128 _mm_load_ps(const float *p) -{ - return vreinterpretq_m128_f32(vld1q_f32(p)); -} - -// Load a single-precision (32-bit) floating-point element from memory into all -// elements of dst. -// -// dst[31:0] := MEM[mem_addr+31:mem_addr] -// dst[63:32] := MEM[mem_addr+31:mem_addr] -// dst[95:64] := MEM[mem_addr+31:mem_addr] -// dst[127:96] := MEM[mem_addr+31:mem_addr] -// -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 -#define _mm_load_ps1 _mm_load1_ps - -// Load a single-precision (32-bit) floating-point element from memory into the -// lower of dst, and zero the upper 3 elements. mem_addr does not need to be -// aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss -FORCE_INLINE __m128 _mm_load_ss(const float *p) -{ - return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); -} - -// Load a single-precision (32-bit) floating-point element from memory into all -// elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps -FORCE_INLINE __m128 _mm_load1_ps(const float *p) -{ - return vreinterpretq_m128_f32(vld1q_dup_f32(p)); -} - -// Load 2 single-precision (32-bit) floating-point elements from memory into the -// upper 2 elements of dst, and copy the lower 2 elements from a to dst. -// mem_addr does not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi -FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); -} - -// Load 2 single-precision (32-bit) floating-point elements from memory into the -// lower 2 elements of dst, and copy the upper 2 elements from a to dst. -// mem_addr does not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi -FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a))); -} - -// Load 4 single-precision (32-bit) floating-point elements from memory into dst -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps -FORCE_INLINE __m128 _mm_loadr_ps(const float *p) -{ - float32x4_t v = vrev64q_f32(vld1q_f32(p)); - return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); -} - -// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point -// elements) from memory into dst. mem_addr does not need to be aligned on any -// particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps -FORCE_INLINE __m128 _mm_loadu_ps(const float *p) -{ - // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are - // equivalent for neon - return vreinterpretq_m128_f32(vld1q_f32(p)); -} - -// Load unaligned 16-bit integer from memory into the first element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 -FORCE_INLINE __m128i _mm_loadu_si16(const void *p) -{ - return vreinterpretq_m128i_s16( - vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0)); -} - -// Load unaligned 64-bit integer from memory into the first element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 -FORCE_INLINE __m128i _mm_loadu_si64(const void *p) -{ - return vreinterpretq_m128i_s64( - vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0))); -} - -// Allocate size bytes of memory, aligned to the alignment specified in align, -// and return a pointer to the allocated memory. _mm_free should be used to free -// memory that is allocated with _mm_malloc. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc -#if !defined(SSE2NEON_ALLOC_DEFINED) -FORCE_INLINE void *_mm_malloc(size_t size, size_t align) -{ - void *ptr; - if (align == 1) - return malloc(size); - if (align == 2 || (sizeof(void *) == 8 && align == 4)) - align = sizeof(void *); - if (!posix_memalign(&ptr, align, size)) - return ptr; - return NULL; -} -#endif - -// Conditionally store 8-bit integer elements from a into memory using mask -// (elements are not stored when the highest bit is not set in the corresponding -// element) and a non-temporal memory hint. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 -FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) -{ - int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); - __m128 b = _mm_load_ps((const float *) mem_addr); - int8x8_t masked = - vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a), - vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b)))); - vst1_s8((int8_t *) mem_addr, masked); -} - -// Conditionally store 8-bit integer elements from a into memory using mask -// (elements are not stored when the highest bit is not set in the corresponding -// element) and a non-temporal memory hint. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq -#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) - -// Compare packed signed 16-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 -FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) -{ - return vreinterpret_m64_s16( - vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b, -// and store packed maximum values in dst. dst does not follow the IEEE Standard -// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or -// signed-zero values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps -FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) -{ -#if SSE2NEON_PRECISE_MINMAX - float32x4_t _a = vreinterpretq_f32_m128(a); - float32x4_t _b = vreinterpretq_f32_m128(b); - return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b)); -#else - return vreinterpretq_m128_f32( - vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#endif -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 -FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) -{ - return vreinterpret_m64_u8( - vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b, store the maximum value in the lower element of dst, and copy the upper 3 -// packed elements from a to the upper element of dst. dst does not follow the -// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when -// inputs are NaN or signed-zero values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss -FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) -{ - float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); -} - -// Compare packed signed 16-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 -FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) -{ - return vreinterpret_m64_s16( - vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); -} - -// Compare packed single-precision (32-bit) floating-point elements in a and b, -// and store packed minimum values in dst. dst does not follow the IEEE Standard -// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or -// signed-zero values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps -FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) -{ -#if SSE2NEON_PRECISE_MINMAX - float32x4_t _a = vreinterpretq_f32_m128(a); - float32x4_t _b = vreinterpretq_f32_m128(b); - return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b)); -#else - return vreinterpretq_m128_f32( - vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#endif -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 -FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) -{ - return vreinterpret_m64_u8( - vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); -} - -// Compare the lower single-precision (32-bit) floating-point elements in a and -// b, store the minimum value in the lower element of dst, and copy the upper 3 -// packed elements from a to the upper element of dst. dst does not follow the -// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when -// inputs are NaN or signed-zero values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss -FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) -{ - float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); -} - -// Move the lower single-precision (32-bit) floating-point element from b to the -// lower element of dst, and copy the upper 3 packed elements from a to the -// upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss -FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0), - vreinterpretq_f32_m128(a), 0)); -} - -// Move the upper 2 single-precision (32-bit) floating-point elements from b to -// the lower 2 elements of dst, and copy the upper 2 elements from a to the -// upper 2 elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps -FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b) -{ -#if defined(aarch64__) - return vreinterpretq_m128_u64( - vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a))); -#else - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); -#endif -} - -// Move the lower 2 single-precision (32-bit) floating-point elements from b to -// the upper 2 elements of dst, and copy the lower 2 elements from a to the -// lower 2 elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps -FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) -{ - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B)); - return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); -} - -// Create mask from the most significant bit of each 8-bit element in a, and -// store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 -FORCE_INLINE int _mm_movemask_pi8(__m64 a) -{ - uint8x8_t input = vreinterpret_u8_m64(a); -#if defined(__aarch64__) || defined(_M_ARM64) - static const int8_t shift[8] = {0, 1, 2, 3, 4, 5, 6, 7}; - uint8x8_t tmp = vshr_n_u8(input, 7); - return vaddv_u8(vshl_u8(tmp, vld1_s8(shift))); -#else - // Refer the implementation of `_mm_movemask_epi8` - uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7)); - uint32x2_t paired16 = - vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7)); - uint8x8_t paired32 = - vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14)); - return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4); -#endif -} - -// Set each bit of mask dst based on the most significant bit of the -// corresponding packed single-precision (32-bit) floating-point element in a. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps -FORCE_INLINE int _mm_movemask_ps(__m128 a) -{ - uint32x4_t input = vreinterpretq_u32_m128(a); -#if defined(__aarch64__) || defined(_M_ARM64) - static const int32_t shift[4] = {0, 1, 2, 3}; - uint32x4_t tmp = vshrq_n_u32(input, 31); - return vaddvq_u32(vshlq_u32(tmp, vld1q_s32(shift))); -#else - // Uses the exact same method as _mm_movemask_epi8, see that for details. - // Shift out everything but the sign bits with a 32-bit unsigned shift - // right. - uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31)); - // Merge the two pairs together with a 64-bit unsigned shift right + add. - uint8x16_t paired = - vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31)); - // Extract the result. - return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2); -#endif -} - -// Multiply packed single-precision (32-bit) floating-point elements in a and b, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps -FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Multiply the lower single-precision (32-bit) floating-point element in a and -// b, store the result in the lower element of dst, and copy the upper 3 packed -// elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss -FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_mul_ps(a, b)); -} - -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 -FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) -{ - return vreinterpret_m64_u16(vshrn_n_u32( - vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); -} - -// Compute the bitwise OR of packed single-precision (32-bit) floating-point -// elements in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps -FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); -} - -// Average packed unsigned 8-bit integers in a and b, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb -#define _m_pavgb(a, b) _mm_avg_pu8(a, b) - -// Average packed unsigned 16-bit integers in a and b, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw -#define _m_pavgw(a, b) _mm_avg_pu16(a, b) - -// Extract a 16-bit integer from a, selected with imm8, and store the result in -// the lower element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw -#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) - -// Copy a to dst, and insert the 16-bit integer i into dst at the location -// specified by imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw -#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) - -// Compare packed signed 16-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw -#define _m_pmaxsw(a, b) _mm_max_pi16(a, b) - -// Compare packed unsigned 8-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub -#define _m_pmaxub(a, b) _mm_max_pu8(a, b) - -// Compare packed signed 16-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw -#define _m_pminsw(a, b) _mm_min_pi16(a, b) - -// Compare packed unsigned 8-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub -#define _m_pminub(a, b) _mm_min_pu8(a, b) - -// Create mask from the most significant bit of each 8-bit element in a, and -// store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb -#define _m_pmovmskb(a) _mm_movemask_pi8(a) - -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw -#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) - -// Fetch the line of data from memory that contains address p to a location in -// the cache hierarchy specified by the locality hint i. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch -FORCE_INLINE void _mm_prefetch(char const *p, int i) -{ - (void) i; -#if defined(_MSC_VER) && !defined(__clang__) - switch (i) { - case _MM_HINT_NTA: - __prefetch2(p, 1); - break; - case _MM_HINT_T0: - __prefetch2(p, 0); - break; - case _MM_HINT_T1: - __prefetch2(p, 2); - break; - case _MM_HINT_T2: - __prefetch2(p, 4); - break; - } -#else - switch (i) { - case _MM_HINT_NTA: - __builtin_prefetch(p, 0, 0); - break; - case _MM_HINT_T0: - __builtin_prefetch(p, 0, 3); - break; - case _MM_HINT_T1: - __builtin_prefetch(p, 0, 2); - break; - case _MM_HINT_T2: - __builtin_prefetch(p, 0, 1); - break; - } -#endif -} - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce four -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw -#define _m_psadbw(a, b) _mm_sad_pu8(a, b) - -// Shuffle 16-bit integers in a using the control in imm8, and store the results -// in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw -#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) - -// Compute the approximate reciprocal of packed single-precision (32-bit) -// floating-point elements in a, and store the results in dst. The maximum -// relative error for this approximation is less than 1.5*2^-12. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps -FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) -{ - float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); -#if SSE2NEON_PRECISE_DIV - // Additional Netwon-Raphson iteration for accuracy - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); -#endif - return vreinterpretq_m128_f32(recip); -} - -// Compute the approximate reciprocal of the lower single-precision (32-bit) -// floating-point element in a, store the result in the lower element of dst, -// and copy the upper 3 packed elements from a to the upper elements of dst. The -// maximum relative error for this approximation is less than 1.5*2^-12. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss -FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) -{ - return _mm_move_ss(a, _mm_rcp_ps(a)); -} - -// Compute the approximate reciprocal square root of packed single-precision -// (32-bit) floating-point elements in a, and store the results in dst. The -// maximum relative error for this approximation is less than 1.5*2^-12. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps -FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) -{ - float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); - - // Generate masks for detecting whether input has any 0.0f/-0.0f - // (which becomes positive/negative infinity by IEEE-754 arithmetic rules). - const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); - const uint32x4_t neg_inf = vdupq_n_u32(0xFF800000); - const uint32x4_t has_pos_zero = - vceqq_u32(pos_inf, vreinterpretq_u32_f32(out)); - const uint32x4_t has_neg_zero = - vceqq_u32(neg_inf, vreinterpretq_u32_f32(out)); - - out = vmulq_f32( - out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); -#if SSE2NEON_PRECISE_SQRT - // Additional Netwon-Raphson iteration for accuracy - out = vmulq_f32( - out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); -#endif - - // Set output vector element to infinity/negative-infinity if - // the corresponding input vector element is 0.0f/-0.0f. - out = vbslq_f32(has_pos_zero, (float32x4_t) pos_inf, out); - out = vbslq_f32(has_neg_zero, (float32x4_t) neg_inf, out); - - return vreinterpretq_m128_f32(out); -} - -// Compute the approximate reciprocal square root of the lower single-precision -// (32-bit) floating-point element in a, store the result in the lower element -// of dst, and copy the upper 3 packed elements from a to the upper elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss -FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) -{ - return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); -} - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce four -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 -FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) -{ - uint64x1_t t = vpaddl_u32(vpaddl_u16( - vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))))); - return vreinterpret_m64_u16( - vset_lane_u16((int) vget_lane_u64(t, 0), vdup_n_u16(0), 0)); -} - -// Macro: Set the flush zero bits of the MXCSR control and status register to -// the value in unsigned 32-bit integer a. The flush zero may contain any of the -// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE -FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) -{ - // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, - // regardless of the value of the FZ bit. - union { - fpcr_bitfield field; -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) || defined(_M_ARM64) - r.value = _sse2neon_get_fpcr(); -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; - -#if defined(__aarch64__) || defined(_M_ARM64) - _sse2neon_set_fpcr(r.value); -#else - __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ -#endif -} - -// Set packed single-precision (32-bit) floating-point elements in dst with the -// supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps -FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) -{ - float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -} - -// Broadcast single-precision (32-bit) floating-point value a to all elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1 -FORCE_INLINE __m128 _mm_set_ps1(float _w) -{ - return vreinterpretq_m128_f32(vdupq_n_f32(_w)); -} - -// Macro: Set the rounding mode bits of the MXCSR control and status register to -// the value in unsigned 32-bit integer a. The rounding mode may contain any of -// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, -// _MM_ROUND_TOWARD_ZERO -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE -FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) -{ - union { - fpcr_bitfield field; -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) || defined(_M_ARM64) - r.value = _sse2neon_get_fpcr(); -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - switch (rounding) { - case _MM_ROUND_TOWARD_ZERO: - r.field.bit22 = 1; - r.field.bit23 = 1; - break; - case _MM_ROUND_DOWN: - r.field.bit22 = 0; - r.field.bit23 = 1; - break; - case _MM_ROUND_UP: - r.field.bit22 = 1; - r.field.bit23 = 0; - break; - default: //_MM_ROUND_NEAREST - r.field.bit22 = 0; - r.field.bit23 = 0; - } - -#if defined(__aarch64__) || defined(_M_ARM64) - _sse2neon_set_fpcr(r.value); -#else - __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ -#endif -} - -// Copy single-precision (32-bit) floating-point element a to the lower element -// of dst, and zero the upper 3 elements. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss -FORCE_INLINE __m128 _mm_set_ss(float a) -{ - return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); -} - -// Broadcast single-precision (32-bit) floating-point value a to all elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps -FORCE_INLINE __m128 _mm_set1_ps(float _w) -{ - return vreinterpretq_m128_f32(vdupq_n_f32(_w)); -} - -// Set the MXCSR control and status register with the value in unsigned 32-bit -// integer a. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr -// FIXME: _mm_setcsr() implementation supports changing the rounding mode only. -FORCE_INLINE void _mm_setcsr(unsigned int a) -{ - _MM_SET_ROUNDING_MODE(a); -} - -// Get the unsigned 32-bit value of the MXCSR control and status register. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr -// FIXME: _mm_getcsr() implementation supports reading the rounding mode only. -FORCE_INLINE unsigned int _mm_getcsr(void) -{ - return _MM_GET_ROUNDING_MODE(); -} - -// Set packed single-precision (32-bit) floating-point elements in dst with the -// supplied values in reverse order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps -FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) -{ - float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -} - -// Return vector of type __m128 with all elements set to zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps -FORCE_INLINE __m128 _mm_setzero_ps(void) -{ - return vreinterpretq_m128_f32(vdupq_n_f32(0)); -} - -// Shuffle 16-bit integers in a using the control in imm8, and store the results -// in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 -#ifdef _sse2neon_shuffle -#define _mm_shuffle_pi16(a, imm) \ - vreinterpret_m64_s16(vshuffle_s16( \ - vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ - ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))) -#else -#define _mm_shuffle_pi16(a, imm) \ - _sse2neon_define1( \ - __m64, a, int16x4_t ret; \ - ret = vmov_n_s16( \ - vget_lane_s16(vreinterpret_s16_m64(_a), (imm) & (0x3))); \ - ret = vset_lane_s16( \ - vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 2) & 0x3), ret, \ - 1); \ - ret = vset_lane_s16( \ - vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 4) & 0x3), ret, \ - 2); \ - ret = vset_lane_s16( \ - vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 6) & 0x3), ret, \ - 3); \ - _sse2neon_return(vreinterpret_m64_s16(ret));) -#endif - -// Perform a serializing operation on all store-to-memory instructions that were -// issued prior to this instruction. Guarantees that every store instruction -// that precedes, in program order, is globally visible before any store -// instruction which follows the fence in program order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence -FORCE_INLINE void _mm_sfence(void) -{ - _sse2neon_smp_mb(); -} - -// Perform a serializing operation on all load-from-memory and store-to-memory -// instructions that were issued prior to this instruction. Guarantees that -// every memory access that precedes, in program order, the memory fence -// instruction is globally visible before any memory instruction which follows -// the fence in program order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence -FORCE_INLINE void _mm_mfence(void) -{ - _sse2neon_smp_mb(); -} - -// Perform a serializing operation on all load-from-memory instructions that -// were issued prior to this instruction. Guarantees that every load instruction -// that precedes, in program order, is globally visible before any load -// instruction which follows the fence in program order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence -FORCE_INLINE void _mm_lfence(void) -{ - _sse2neon_smp_mb(); -} - -// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) -// int imm) -#ifdef _sse2neon_shuffle -#define _mm_shuffle_ps(a, b, imm) \ - __extension__({ \ - float32x4_t _input1 = vreinterpretq_f32_m128(a); \ - float32x4_t _input2 = vreinterpretq_f32_m128(b); \ - float32x4_t _shuf = \ - vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128_f32(_shuf); \ - }) -#else // generic -#define _mm_shuffle_ps(a, b, imm) \ - _sse2neon_define2( \ - __m128, a, b, __m128 ret; switch (imm) { \ - case _MM_SHUFFLE(1, 0, 3, 2): \ - ret = _mm_shuffle_ps_1032(_a, _b); \ - break; \ - case _MM_SHUFFLE(2, 3, 0, 1): \ - ret = _mm_shuffle_ps_2301(_a, _b); \ - break; \ - case _MM_SHUFFLE(0, 3, 2, 1): \ - ret = _mm_shuffle_ps_0321(_a, _b); \ - break; \ - case _MM_SHUFFLE(2, 1, 0, 3): \ - ret = _mm_shuffle_ps_2103(_a, _b); \ - break; \ - case _MM_SHUFFLE(1, 0, 1, 0): \ - ret = _mm_movelh_ps(_a, _b); \ - break; \ - case _MM_SHUFFLE(1, 0, 0, 1): \ - ret = _mm_shuffle_ps_1001(_a, _b); \ - break; \ - case _MM_SHUFFLE(0, 1, 0, 1): \ - ret = _mm_shuffle_ps_0101(_a, _b); \ - break; \ - case _MM_SHUFFLE(3, 2, 1, 0): \ - ret = _mm_shuffle_ps_3210(_a, _b); \ - break; \ - case _MM_SHUFFLE(0, 0, 1, 1): \ - ret = _mm_shuffle_ps_0011(_a, _b); \ - break; \ - case _MM_SHUFFLE(0, 0, 2, 2): \ - ret = _mm_shuffle_ps_0022(_a, _b); \ - break; \ - case _MM_SHUFFLE(2, 2, 0, 0): \ - ret = _mm_shuffle_ps_2200(_a, _b); \ - break; \ - case _MM_SHUFFLE(3, 2, 0, 2): \ - ret = _mm_shuffle_ps_3202(_a, _b); \ - break; \ - case _MM_SHUFFLE(3, 2, 3, 2): \ - ret = _mm_movehl_ps(_b, _a); \ - break; \ - case _MM_SHUFFLE(1, 1, 3, 3): \ - ret = _mm_shuffle_ps_1133(_a, _b); \ - break; \ - case _MM_SHUFFLE(2, 0, 1, 0): \ - ret = _mm_shuffle_ps_2010(_a, _b); \ - break; \ - case _MM_SHUFFLE(2, 0, 0, 1): \ - ret = _mm_shuffle_ps_2001(_a, _b); \ - break; \ - case _MM_SHUFFLE(2, 0, 3, 2): \ - ret = _mm_shuffle_ps_2032(_a, _b); \ - break; \ - default: \ - ret = _mm_shuffle_ps_default(_a, _b, (imm)); \ - break; \ - } _sse2neon_return(ret);) -#endif - -// Compute the square root of packed single-precision (32-bit) floating-point -// elements in a, and store the results in dst. -// Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement -// square root by multiplying input in with its reciprocal square root before -// using the Newton-Raphson method to approximate the results. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps -FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_SQRT - return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); -#else - float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in)); - - // Test for vrsqrteq_f32(0) -> positive infinity case. - // Change to zero, so that s * 1/sqrt(s) result is zero too. - const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); - const uint32x4_t div_by_zero = - vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip)); - recip = vreinterpretq_f32_u32( - vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip))); - - recip = vmulq_f32( - vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), - recip); - // Additional Netwon-Raphson iteration for accuracy - recip = vmulq_f32( - vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), - recip); - - // sqrt(s) = s * 1/sqrt(s) - return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip)); -#endif -} - -// Compute the square root of the lower single-precision (32-bit) floating-point -// element in a, store the result in the lower element of dst, and copy the -// upper 3 packed elements from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss -FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) -{ - float32_t value = - vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); -} - -// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point -// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary -// or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps -FORCE_INLINE void _mm_store_ps(float *p, __m128 a) -{ - vst1q_f32(p, vreinterpretq_f32_m128(a)); -} - -// Store the lower single-precision (32-bit) floating-point element from a into -// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 -FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) -{ - float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - vst1q_f32(p, vdupq_n_f32(a0)); -} - -// Store the lower single-precision (32-bit) floating-point element from a into -// memory. mem_addr does not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss -FORCE_INLINE void _mm_store_ss(float *p, __m128 a) -{ - vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); -} - -// Store the lower single-precision (32-bit) floating-point element from a into -// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps -#define _mm_store1_ps _mm_store_ps1 - -// Store the upper 2 single-precision (32-bit) floating-point elements from a -// into memory. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi -FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) -{ - *p = vreinterpret_m64_f32(vget_high_f32(a)); -} - -// Store the lower 2 single-precision (32-bit) floating-point elements from a -// into memory. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi -FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) -{ - *p = vreinterpret_m64_f32(vget_low_f32(a)); -} - -// Store 4 single-precision (32-bit) floating-point elements from a into memory -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps -FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) -{ - float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); - float32x4_t rev = vextq_f32(tmp, tmp, 2); - vst1q_f32(p, rev); -} - -// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point -// elements) from a into memory. mem_addr does not need to be aligned on any -// particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps -FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) -{ - vst1q_f32(p, vreinterpretq_f32_m128(a)); -} - -// Stores 16-bits of integer data a at the address p. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 -FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) -{ - vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); -} - -// Stores 64-bits of integer data a at the address p. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 -FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) -{ - vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); -} - -// Store 64-bits of integer data from a into memory using a non-temporal memory -// hint. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi -FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) -{ - vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); -} - -// Store 128-bits (composed of 4 packed single-precision (32-bit) floating- -// point elements) from a into memory using a non-temporal memory hint. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps -FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) -{ -#if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); -#else - vst1q_f32(p, vreinterpretq_f32_m128(a)); -#endif -} - -// Subtract packed single-precision (32-bit) floating-point elements in b from -// packed single-precision (32-bit) floating-point elements in a, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps -FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Subtract the lower single-precision (32-bit) floating-point element in b from -// the lower single-precision (32-bit) floating-point element in a, store the -// result in the lower element of dst, and copy the upper 3 packed elements from -// a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss -FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_sub_ps(a, b)); -} - -// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision -// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the -// transposed matrix in these vectors (row0 now contains column 0, etc.). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS -#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ - do { \ - float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ - float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \ - row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \ - vget_low_f32(ROW23.val[0])); \ - row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \ - vget_low_f32(ROW23.val[1])); \ - row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \ - vget_high_f32(ROW23.val[0])); \ - row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \ - vget_high_f32(ROW23.val[1])); \ - } while (0) - -// according to the documentation, these intrinsics behave the same as the -// non-'u' versions. We'll just alias them here. -#define _mm_ucomieq_ss _mm_comieq_ss -#define _mm_ucomige_ss _mm_comige_ss -#define _mm_ucomigt_ss _mm_comigt_ss -#define _mm_ucomile_ss _mm_comile_ss -#define _mm_ucomilt_ss _mm_comilt_ss -#define _mm_ucomineq_ss _mm_comineq_ss - -// Return vector of type __m128i with undefined elements. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 -FORCE_INLINE __m128i _mm_undefined_si128(void) -{ -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#endif - __m128i a; -#if defined(_MSC_VER) - a = _mm_setzero_si128(); -#endif - return a; -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic pop -#endif -} - -// Return vector of type __m128 with undefined elements. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps -FORCE_INLINE __m128 _mm_undefined_ps(void) -{ -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#endif - __m128 a; -#if defined(_MSC_VER) - a = _mm_setzero_ps(); -#endif - return a; -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic pop -#endif -} - -// Unpack and interleave single-precision (32-bit) floating-point elements from -// the high half a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps -FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32( - vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); - float32x2x2_t result = vzip_f32(a1, b1); - return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave single-precision (32-bit) floating-point elements from -// the low half of a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps -FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32( - vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); - float32x2x2_t result = vzip_f32(a1, b1); - return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); -#endif -} - -// Compute the bitwise XOR of packed single-precision (32-bit) floating-point -// elements in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps -FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); -} - -/* SSE2 */ - -// Add packed 16-bit integers in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16 -FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Add packed 32-bit integers in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32 -FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Add packed 64-bit integers in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64 -FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s64( - vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -} - -// Add packed 8-bit integers in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8 -FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Add packed double-precision (64-bit) floating-point elements in a and b, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd -FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] + db[0]; - c[1] = da[1] + db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Add the lower double-precision (64-bit) floating-point element in a and b, -// store the result in the lower element of dst, and copy the upper element from -// a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd -FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_add_pd(a, b)); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] + db[0]; - c[1] = da[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Add 64-bit integers a and b, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 -FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) -{ - return vreinterpret_m64_s64( - vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); -} - -// Add packed signed 16-bit integers in a and b using saturation, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16 -FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Add packed signed 8-bit integers in a and b using saturation, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 -FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Add packed unsigned 16-bit integers in a and b using saturation, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 -FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Add packed unsigned 8-bit integers in a and b using saturation, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8 -FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Compute the bitwise AND of packed double-precision (64-bit) floating-point -// elements in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd -FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_s64( - vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); -} - -// Compute the bitwise AND of 128 bits (representing integer data) in a and b, -// and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128 -FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compute the bitwise NOT of packed double-precision (64-bit) floating-point -// elements in a and then AND with b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd -FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) -{ - // *NOTE* argument swap - return vreinterpretq_m128d_s64( - vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); -} - -// Compute the bitwise NOT of 128 bits (representing integer data) in a and then -// AND with b, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128 -FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vbicq_s32(vreinterpretq_s32_m128i(b), - vreinterpretq_s32_m128i(a))); // *NOTE* argument swap -} - -// Average packed unsigned 16-bit integers in a and b, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16 -FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) -{ - return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), - vreinterpretq_u16_m128i(b)); -} - -// Average packed unsigned 8-bit integers in a and b, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8 -FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Shift a left by imm8 bytes while shifting in zeros, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 -#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) - -// Shift a right by imm8 bytes while shifting in zeros, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 -#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) - -// Cast vector of type __m128d to type __m128. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps -FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) -{ - return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); -} - -// Cast vector of type __m128d to type __m128i. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 -FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) -{ - return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); -} - -// Cast vector of type __m128 to type __m128d. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd -FORCE_INLINE __m128d _mm_castps_pd(__m128 a) -{ - return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); -} - -// Cast vector of type __m128 to type __m128i. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128 -FORCE_INLINE __m128i _mm_castps_si128(__m128 a) -{ - return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); -} - -// Cast vector of type __m128i to type __m128d. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd -FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a)); -#else - return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a)); -#endif -} - -// Cast vector of type __m128i to type __m128. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps -FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) -{ - return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); -} - -// Invalidate and flush the cache line that contains p from all levels of the -// cache hierarchy. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush -#if defined(__APPLE__) -#include -#endif -FORCE_INLINE void _mm_clflush(void const *p) -{ - (void) p; - - /* sys_icache_invalidate is supported since macOS 10.5. - * However, it does not work on non-jailbroken iOS devices, although the - * compilation is successful. - */ -#if defined(__APPLE__) - sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); -#elif defined(__GNUC__) || defined(__clang__) - uintptr_t ptr = (uintptr_t) p; - __builtin___clear_cache((char *) ptr, - (char *) ptr + SSE2NEON_CACHELINE_SIZE); -#elif (_MSC_VER) && SSE2NEON_INCLUDE_WINDOWS_H - FlushInstructionCache(GetCurrentProcess(), p, SSE2NEON_CACHELINE_SIZE); -#endif -} - -// Compare packed 16-bit integers in a and b for equality, and store the results -// in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16 -FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed 32-bit integers in a and b for equality, and store the results -// in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32 -FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compare packed 8-bit integers in a and b for equality, and store the results -// in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8 -FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for equality, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd -FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64( - vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) - uint32x4_t cmp = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); - uint32x4_t swapped = vrev64q_u32(cmp); - return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for equality, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd -FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for greater-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd -FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64( - vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for greater-than-or-equal, store the result in the lower element of dst, -// and copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd -FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_cmpge_pd(a, b)); -#else - // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed signed 16-bit integers in a and b for greater-than, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16 -FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed signed 32-bit integers in a and b for greater-than, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32 -FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compare packed signed 8-bit integers in a and b for greater-than, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8 -FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for greater-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd -FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64( - vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for greater-than, store the result in the lower element of dst, and copy -// the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd -FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_cmpgt_pd(a, b)); -#else - // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for less-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd -FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64( - vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for less-than-or-equal, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd -FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_cmple_pd(a, b)); -#else - // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed signed 16-bit integers in a and b for less-than, and store the -// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the -// order of the operands switched. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16 -FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed signed 32-bit integers in a and b for less-than, and store the -// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the -// order of the operands switched. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32 -FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compare packed signed 8-bit integers in a and b for less-than, and store the -// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the -// order of the operands switched. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8 -FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for less-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd -FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64( - vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for less-than, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd -FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_cmplt_pd(a, b)); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd -FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64( - vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))))); -#else - // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) - uint32x4_t cmp = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); - uint32x4_t swapped = vrev64q_u32(cmp); - return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped))); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-equal, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd -FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-greater-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd -FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64(veorq_u64( - vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), - vdupq_n_u64(UINT64_MAX))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = - !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-greater-than-or-equal, store the result in the lower element of -// dst, and copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd -FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-greater-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd -FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64(veorq_u64( - vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), - vdupq_n_u64(UINT64_MAX))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = - !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-greater-than, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd -FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-less-than-or-equal, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd -FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64(veorq_u64( - vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), - vdupq_n_u64(UINT64_MAX))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = - !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-less-than-or-equal, store the result in the lower element of dst, -// and copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd -FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-less-than, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd -FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_u64(veorq_u64( - vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), - vdupq_n_u64(UINT64_MAX))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = - !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-less-than, store the result in the lower element of dst, and copy -// the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd -FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// to see if neither is NaN, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd -FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - // Excluding NaNs, any two floating point numbers can be compared. - uint64x2_t not_nan_a = - vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); - uint64x2_t not_nan_b = - vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); - return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b)); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? ~UINT64_C(0) - : UINT64_C(0); - d[1] = ((*(double *) &a1) == (*(double *) &a1) && - (*(double *) &b1) == (*(double *) &b1)) - ? ~UINT64_C(0) - : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b to see if neither is NaN, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd -FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_cmpord_pd(a, b)); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? ~UINT64_C(0) - : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// to see if either is NaN, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd -FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - // Two NaNs are not equal in comparison operation. - uint64x2_t not_nan_a = - vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); - uint64x2_t not_nan_b = - vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); - return vreinterpretq_m128d_s32( - vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b)))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? UINT64_C(0) - : ~UINT64_C(0); - d[1] = ((*(double *) &a1) == (*(double *) &a1) && - (*(double *) &b1) == (*(double *) &b1)) - ? UINT64_C(0) - : ~UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b to see if either is NaN, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd -FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_cmpunord_pd(a, b)); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? UINT64_C(0) - : ~UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for greater-than-or-equal, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd -FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1; -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - - return (*(double *) &a0 >= *(double *) &b0); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for greater-than, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd -FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1; -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - - return (*(double *) &a0 > *(double *) &b0); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for less-than-or-equal, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd -FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1; -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - - return (*(double *) &a0 <= *(double *) &b0); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for less-than, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd -FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1; -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - - return (*(double *) &a0 < *(double *) &b0); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for equality, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd -FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1; -#else - uint32x4_t a_not_nan = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a)); - uint32x4_t b_not_nan = - vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_eq_b = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); - uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan), - vreinterpretq_u64_u32(a_eq_b)); - return vgetq_lane_u64(and_results, 0) & 0x1; -#endif -} - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for not-equal, and return the boolean result (0 or 1). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd -FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) -{ - return !_mm_comieq_sd(a, b); -} - -// Convert packed signed 32-bit integers in a to packed double-precision -// (64-bit) floating-point elements, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd -FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))))); -#else - double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); - double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1); - return _mm_set_pd(a1, a0); -#endif -} - -// Convert packed signed 32-bit integers in a to packed single-precision -// (32-bit) floating-point elements, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps -FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) -{ - return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); -} - -// Convert packed double-precision (64-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 -FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) -{ -// vrnd32xq_f64 not supported on clang -#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) - float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); - int64x2_t integers = vcvtq_s64_f64(rounded); - return vreinterpretq_m128i_s32( - vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); -#else - __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double d0 = ((double *) &rnd)[0]; - double d1 = ((double *) &rnd)[1]; - return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); -#endif -} - -// Convert packed double-precision (64-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 -FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) -{ - __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double d0 = ((double *) &rnd)[0]; - double d1 = ((double *) &rnd)[1]; - int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1}; - return vreinterpret_m64_s32(vld1_s32(data)); -} - -// Convert packed double-precision (64-bit) floating-point elements in a to -// packed single-precision (32-bit) floating-point elements, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps -FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a)); - return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0))); -#else - float a0 = (float) ((double *) &a)[0]; - float a1 = (float) ((double *) &a)[1]; - return _mm_set_ps(0, 0, a1, a0); -#endif -} - -// Convert packed signed 32-bit integers in a to packed double-precision -// (64-bit) floating-point elements, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd -FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a)))); -#else - double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0); - double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1); - return _mm_set_pd(a1, a0); -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32 -// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A -// does not support! It is supported on ARMv8-A however. -FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) -{ -#if defined(__ARM_FEATURE_FRINT) - return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); -#elif (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - switch (_MM_GET_ROUNDING_MODE()) { - case _MM_ROUND_NEAREST: - return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); - case _MM_ROUND_DOWN: - return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a)); - case _MM_ROUND_UP: - return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a)); - default: // _MM_ROUND_TOWARD_ZERO - return vreinterpretq_m128i_s32(vcvtq_s32_f32(a)); - } -#else - float *f = (float *) &a; - switch (_MM_GET_ROUNDING_MODE()) { - case _MM_ROUND_NEAREST: { - uint32x4_t signmask = vdupq_n_u32(0x80000000); - float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), - vdupq_n_f32(0.5f)); /* +/- 0.5 */ - int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( - vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ - int32x4_t r_trunc = vcvtq_s32_f32( - vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ - int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( - vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ - int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), - vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ - float32x4_t delta = vsubq_f32( - vreinterpretq_f32_m128(a), - vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ - uint32x4_t is_delta_half = - vceqq_f32(delta, half); /* delta == +/- 0.5 */ - return vreinterpretq_m128i_s32( - vbslq_s32(is_delta_half, r_even, r_normal)); - } - case _MM_ROUND_DOWN: - return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]), - floorf(f[0])); - case _MM_ROUND_UP: - return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), - ceilf(f[0])); - default: // _MM_ROUND_TOWARD_ZERO - return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1], - (int32_t) f[0]); - } -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed double-precision (64-bit) floating-point elements, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd -FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a)))); -#else - double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); - return _mm_set_pd(a1, a0); -#endif -} - -// Copy the lower double-precision (64-bit) floating-point element of a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 -FORCE_INLINE double _mm_cvtsd_f64(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0); -#else - return ((double *) &a)[0]; -#endif -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 32-bit integer, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 -FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); -#else - __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double ret = ((double *) &rnd)[0]; - return (int32_t) ret; -#endif -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 64-bit integer, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 -FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); -#else - __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double ret = ((double *) &rnd)[0]; - return (int64_t) ret; -#endif -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 64-bit integer, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x -#define _mm_cvtsd_si64x _mm_cvtsd_si64 - -// Convert the lower double-precision (64-bit) floating-point element in b to a -// single-precision (32-bit) floating-point element, store the result in the -// lower element of dst, and copy the upper 3 packed elements from a to the -// upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss -FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32(vsetq_lane_f32( - vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0), - vreinterpretq_f32_m128(a), 0)); -#else - return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0], - vreinterpretq_f32_m128(a), 0)); -#endif -} - -// Copy the lower 32-bit integer in a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 -FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) -{ - return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); -} - -// Copy the lower 64-bit integer in a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 -FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) -{ - return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); -} - -// Copy the lower 64-bit integer in a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x -#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) - -// Convert the signed 32-bit integer b to a double-precision (64-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd -FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); -#else - double bf = (double) b; - return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); -#endif -} - -// Copy the lower 64-bit integer in a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x -#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) - -// Copy 32-bit integer a to the lower elements of dst, and zero the upper -// elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128 -FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) -{ - return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); -} - -// Convert the signed 64-bit integer b to a double-precision (64-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd -FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); -#else - double bf = (double) b; - return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); -#endif -} - -// Copy 64-bit integer a to the lower element of dst, and zero the upper -// element. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128 -FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) -{ - return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); -} - -// Copy 64-bit integer a to the lower element of dst, and zero the upper -// element. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 -#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) - -// Convert the signed 64-bit integer b to a double-precision (64-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd -#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) - -// Convert the lower single-precision (32-bit) floating-point element in b to a -// double-precision (64-bit) floating-point element, store the result in the -// lower element of dst, and copy the upper element from a to the upper element -// of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd -FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) -{ - double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0)); -#else - return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0)); -#endif -} - -// Convert packed double-precision (64-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 -FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) -{ - double a0 = ((double *) &a)[0]; - double a1 = ((double *) &a)[1]; - return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0); -} - -// Convert packed double-precision (64-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 -FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) -{ - double a0 = ((double *) &a)[0]; - double a1 = ((double *) &a)[1]; - int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1}; - return vreinterpret_m64_s32(vld1_s32(data)); -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32 -FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) -{ - return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 32-bit integer with truncation, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 -FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) -{ - double ret = *((double *) &a); - return (int32_t) ret; -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 64-bit integer with truncation, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 -FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0); -#else - double ret = *((double *) &a); - return (int64_t) ret; -#endif -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 64-bit integer with truncation, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x -#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) - -// Divide packed double-precision (64-bit) floating-point elements in a by -// packed elements in b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd -FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] / db[0]; - c[1] = da[1] / db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Divide the lower double-precision (64-bit) floating-point element in a by the -// lower double-precision (64-bit) floating-point element in b, store the result -// in the lower element of dst, and copy the upper element from a to the upper -// element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd -FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - float64x2_t tmp = - vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)); - return vreinterpretq_m128d_f64( - vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1)); -#else - return _mm_move_sd(a, _mm_div_pd(a, b)); -#endif -} - -// Extract a 16-bit integer from a, selected with imm8, and store the result in -// the lower element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16 -// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) -#define _mm_extract_epi16(a, imm) \ - vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) - -// Copy a to dst, and insert the 16-bit integer i into dst at the location -// specified by imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16 -// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, -// __constrange(0,8) int imm) -#define _mm_insert_epi16(a, b, imm) \ - vreinterpretq_m128i_s16( \ - vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))) - -// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from memory into dst. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd -FORCE_INLINE __m128d _mm_load_pd(const double *p) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vld1q_f64(p)); -#else - const float *fp = (const float *) p; - float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]}; - return vreinterpretq_m128d_f32(vld1q_f32(data)); -#endif -} - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 -#define _mm_load_pd1 _mm_load1_pd - -// Load a double-precision (64-bit) floating-point element from memory into the -// lower of dst, and zero the upper element. mem_addr does not need to be -// aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd -FORCE_INLINE __m128d _mm_load_sd(const double *p) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0)); -#else - const float *fp = (const float *) p; - float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0}; - return vreinterpretq_m128d_f32(vld1q_f32(data)); -#endif -} - -// Load 128-bits of integer data from memory into dst. mem_addr must be aligned -// on a 16-byte boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128 -FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) -{ - return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); -} - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd -FORCE_INLINE __m128d _mm_load1_pd(const double *p) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vld1q_dup_f64(p)); -#else - return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p)); -#endif -} - -// Load a double-precision (64-bit) floating-point element from memory into the -// upper element of dst, and copy the lower element from a to dst. mem_addr does -// not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd -FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p))); -#else - return vreinterpretq_m128d_f32(vcombine_f32( - vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p))); -#endif -} - -// Load 64-bit integer from memory into the first element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 -FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) -{ - /* Load the lower 64 bits of the value pointed to by p into the - * lower 64 bits of the result, zeroing the upper 64 bits of the result. - */ - return vreinterpretq_m128i_s32( - vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0))); -} - -// Load a double-precision (64-bit) floating-point element from memory into the -// lower element of dst, and copy the upper element from a to dst. mem_addr does -// not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd -FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a)))); -#else - return vreinterpretq_m128d_f32( - vcombine_f32(vld1_f32((const float *) p), - vget_high_f32(vreinterpretq_f32_m128d(a)))); -#endif -} - -// Load 2 double-precision (64-bit) floating-point elements from memory into dst -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd -FORCE_INLINE __m128d _mm_loadr_pd(const double *p) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - float64x2_t v = vld1q_f64(p); - return vreinterpretq_m128d_f64(vextq_f64(v, v, 1)); -#else - int64x2_t v = vld1q_s64((const int64_t *) p); - return vreinterpretq_m128d_s64(vextq_s64(v, v, 1)); -#endif -} - -// Loads two double-precision from unaligned memory, floating-point values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd -FORCE_INLINE __m128d _mm_loadu_pd(const double *p) -{ - return _mm_load_pd(p); -} - -// Load 128-bits of integer data from memory into dst. mem_addr does not need to -// be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128 -FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) -{ - return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); -} - -// Load unaligned 32-bit integer from memory into the first element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 -FORCE_INLINE __m128i _mm_loadu_si32(const void *p) -{ - return vreinterpretq_m128i_s32( - vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0)); -} - -// Multiply packed signed 16-bit integers in a and b, producing intermediate -// signed 32-bit integers. Horizontally add adjacent pairs of intermediate -// 32-bit integers, and pack the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16 -FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) -{ - int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), - vget_low_s16(vreinterpretq_s16_m128i(b))); -#if defined(__aarch64__) || defined(_M_ARM64) - int32x4_t high = - vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); - - return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); -#else - int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), - vget_high_s16(vreinterpretq_s16_m128i(b))); - - int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); - int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); - - return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); -#endif -} - -// Conditionally store 8-bit integer elements from a into memory using mask -// (elements are not stored when the highest bit is not set in the corresponding -// element) and a non-temporal memory hint. mem_addr does not need to be aligned -// on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 -FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) -{ - int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); - __m128 b = _mm_load_ps((const float *) mem_addr); - int8x16_t masked = - vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a), - vreinterpretq_s8_m128(b)); - vst1q_s8((int8_t *) mem_addr, masked); -} - -// Compare packed signed 16-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16 -FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8 -FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b, -// and store packed maximum values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd -FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) -#if SSE2NEON_PRECISE_MINMAX - float64x2_t _a = vreinterpretq_f64_m128d(a); - float64x2_t _b = vreinterpretq_f64_m128d(b); - return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b)); -#else - return vreinterpretq_m128d_f64( - vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#endif -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0; - d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b, store the maximum value in the lower element of dst, and copy the upper -// element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd -FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_max_pd(a, b)); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; - return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); -#endif -} - -// Compare packed signed 16-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16 -FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8 -FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b, -// and store packed minimum values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd -FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) -#if SSE2NEON_PRECISE_MINMAX - float64x2_t _a = vreinterpretq_f64_m128d(a); - float64x2_t _b = vreinterpretq_f64_m128d(b); - return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b)); -#else - return vreinterpretq_m128d_f64( - vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#endif -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0; - d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1; - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b, store the minimum value in the lower element of dst, and copy the upper -// element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd -FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_min_pd(a, b)); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; - return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); -#endif -} - -// Copy the lower 64-bit integer in a to the lower element of dst, and zero the -// upper element. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 -FORCE_INLINE __m128i _mm_move_epi64(__m128i a) -{ - return vreinterpretq_m128i_s64( - vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1)); -} - -// Move the lower double-precision (64-bit) floating-point element from b to the -// lower element of dst, and copy the upper element from a to the upper element -// of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd -FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_f32( - vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)), - vget_high_f32(vreinterpretq_f32_m128d(a)))); -} - -// Create mask from the most significant bit of each 8-bit element in a, and -// store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8 -FORCE_INLINE int _mm_movemask_epi8(__m128i a) -{ - // Use increasingly wide shifts+adds to collect the sign bits - // together. - // Since the widening shifts would be rather confusing to follow in little - // endian, everything will be illustrated in big endian order instead. This - // has a different result - the bits would actually be reversed on a big - // endian machine. - - // Starting input (only half the elements are shown): - // 89 ff 1d c0 00 10 99 33 - uint8x16_t input = vreinterpretq_u8_m128i(a); - - // Shift out everything but the sign bits with an unsigned shift right. - // - // Bytes of the vector:: - // 89 ff 1d c0 00 10 99 33 - // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7) - // | | | | | | | | - // 01 01 00 01 00 00 01 00 - // - // Bits of first important lane(s): - // 10001001 (89) - // \______ - // | - // 00000001 (01) - uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7)); - - // Merge the even lanes together with a 16-bit unsigned shift right + add. - // 'xx' represents garbage data which will be ignored in the final result. - // In the important bytes, the add functions like a binary OR. - // - // 01 01 00 01 00 00 01 00 - // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7)) - // \| \| \| \| - // xx 03 xx 01 xx 00 xx 02 - // - // 00000001 00000001 (01 01) - // \_______ | - // \| - // xxxxxxxx xxxxxx11 (xx 03) - uint32x4_t paired16 = - vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7)); - - // Repeat with a wider 32-bit shift + add. - // xx 03 xx 01 xx 00 xx 02 - // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >> - // 14)) - // \| \| - // xx xx xx 0d xx xx xx 02 - // - // 00000011 00000001 (03 01) - // \\_____ || - // '----.\|| - // xxxxxxxx xxxx1101 (xx 0d) - uint64x2_t paired32 = - vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14)); - - // Last, an even wider 64-bit shift + add to get our result in the low 8 bit - // lanes. xx xx xx 0d xx xx xx 02 - // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >> - // 28)) - // \| - // xx xx xx xx xx xx xx d2 - // - // 00001101 00000010 (0d 02) - // \ \___ | | - // '---. \| | - // xxxxxxxx 11010010 (xx d2) - uint8x16_t paired64 = - vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28)); - - // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts. - // xx xx xx xx xx xx xx d2 - // || return paired64[0] - // d2 - // Note: Little endian would return the correct value 4b (01001011) instead. - return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8); -} - -// Set each bit of mask dst based on the most significant bit of the -// corresponding packed double-precision (64-bit) floating-point element in a. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd -FORCE_INLINE int _mm_movemask_pd(__m128d a) -{ - uint64x2_t input = vreinterpretq_u64_m128d(a); - uint64x2_t high_bits = vshrq_n_u64(input, 63); - return (int) (vgetq_lane_u64(high_bits, 0) | - (vgetq_lane_u64(high_bits, 1) << 1)); -} - -// Copy the lower 64-bit integer in a to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 -FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) -{ - return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); -} - -// Copy the 64-bit integer a to the lower element of dst, and zero the upper -// element. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 -FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) -{ - return vreinterpretq_m128i_s64( - vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0))); -} - -// Multiply the low unsigned 32-bit integers from each packed 64-bit element in -// a and b, and store the unsigned 64-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32 -FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) -{ - // vmull_u32 upcasts instead of masking, so we downcast. - uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a)); - uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b)); - return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo)); -} - -// Multiply packed double-precision (64-bit) floating-point elements in a and b, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd -FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] * db[0]; - c[1] = da[1] * db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Multiply the lower double-precision (64-bit) floating-point element in a and -// b, store the result in the lower element of dst, and copy the upper element -// from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd -FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_mul_pd(a, b)); -} - -// Multiply the low unsigned 32-bit integers from a and b, and store the -// unsigned 64-bit result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 -FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) -{ - return vreinterpret_m64_u64(vget_low_u64( - vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); -} - -// Multiply the packed signed 16-bit integers in a and b, producing intermediate -// 32-bit integers, and store the high 16 bits of the intermediate integers in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16 -FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) -{ - /* FIXME: issue with large values because of result saturation */ - // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), - // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return - // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); - int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); - int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ - int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); - int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ - uint16x8x2_t r = - vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); - return vreinterpretq_m128i_u16(r.val[1]); -} - -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 -FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) -{ - uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); - uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b)); - uint32x4_t ab3210 = vmull_u16(a3210, b3210); -#if defined(__aarch64__) || defined(_M_ARM64) - uint32x4_t ab7654 = - vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); - uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210), - vreinterpretq_u16_u32(ab7654)); - return vreinterpretq_m128i_u16(r); -#else - uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a)); - uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b)); - uint32x4_t ab7654 = vmull_u16(a7654, b7654); - uint16x8x2_t r = - vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654)); - return vreinterpretq_m128i_u16(r.val[1]); -#endif -} - -// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit -// integers, and store the low 16 bits of the intermediate integers in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16 -FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compute the bitwise OR of packed double-precision (64-bit) floating-point -// elements in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd -FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_s64( - vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); -} - -// Compute the bitwise OR of 128 bits (representing integer data) in a and b, -// and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128 -FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Convert packed signed 16-bit integers from a and b to packed 8-bit integers -// using signed saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16 -FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), - vqmovn_s16(vreinterpretq_s16_m128i(b)))); -} - -// Convert packed signed 32-bit integers from a and b to packed 16-bit integers -// using signed saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32 -FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), - vqmovn_s32(vreinterpretq_s32_m128i(b)))); -} - -// Convert packed signed 16-bit integers from a and b to packed 8-bit integers -// using unsigned saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16 -FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) -{ - return vreinterpretq_m128i_u8( - vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), - vqmovun_s16(vreinterpretq_s16_m128i(b)))); -} - -// Pause the processor. This is typically used in spin-wait loops and depending -// on the x86 processor typical values are in the 40-100 cycle range. The -// 'yield' instruction isn't a good fit because it's effectively a nop on most -// Arm cores. Experience with several databases has shown has shown an 'isb' is -// a reasonable approximation. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause -FORCE_INLINE void _mm_pause(void) -{ -#if defined(_MSC_VER) && !defined(__clang__) - __isb(_ARM64_BARRIER_SY); -#else - __asm__ __volatile__("isb\n"); -#endif -} - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce two -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of 64-bit elements in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 -FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) -{ - uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); - return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t))); -} - -// Set packed 16-bit integers in dst with the supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16 -FORCE_INLINE __m128i _mm_set_epi16(short i7, - short i6, - short i5, - short i4, - short i3, - short i2, - short i1, - short i0) -{ - int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7}; - return vreinterpretq_m128i_s16(vld1q_s16(data)); -} - -// Set packed 32-bit integers in dst with the supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32 -FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) -{ - int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; - return vreinterpretq_m128i_s32(vld1q_s32(data)); -} - -// Set packed 64-bit integers in dst with the supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64 -FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) -{ - return _mm_set_epi64x(vget_lane_s64(i1, 0), vget_lane_s64(i2, 0)); -} - -// Set packed 64-bit integers in dst with the supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x -FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) -{ - return vreinterpretq_m128i_s64( - vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); -} - -// Set packed 8-bit integers in dst with the supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8 -FORCE_INLINE __m128i _mm_set_epi8(signed char b15, - signed char b14, - signed char b13, - signed char b12, - signed char b11, - signed char b10, - signed char b9, - signed char b8, - signed char b7, - signed char b6, - signed char b5, - signed char b4, - signed char b3, - signed char b2, - signed char b1, - signed char b0) -{ - int8_t ALIGN_STRUCT(16) - data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, - (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, - (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, - (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; - return (__m128i) vld1q_s8(data); -} - -// Set packed double-precision (64-bit) floating-point elements in dst with the -// supplied values. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd -FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) -{ - double ALIGN_STRUCT(16) data[2] = {e0, e1}; -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data)); -#else - return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data)); -#endif -} - -// Broadcast double-precision (64-bit) floating-point value a to all elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 -#define _mm_set_pd1 _mm_set1_pd - -// Copy double-precision (64-bit) floating-point element a to the lower element -// of dst, and zero the upper element. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd -FORCE_INLINE __m128d _mm_set_sd(double a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); -#else - return _mm_set_pd(0, a); -#endif -} - -// Broadcast 16-bit integer a to all elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16 -FORCE_INLINE __m128i _mm_set1_epi16(short w) -{ - return vreinterpretq_m128i_s16(vdupq_n_s16(w)); -} - -// Broadcast 32-bit integer a to all elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32 -FORCE_INLINE __m128i _mm_set1_epi32(int _i) -{ - return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); -} - -// Broadcast 64-bit integer a to all elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64 -FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) -{ - return vreinterpretq_m128i_s64(vdupq_lane_s64(_i, 0)); -} - -// Broadcast 64-bit integer a to all elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x -FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) -{ - return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); -} - -// Broadcast 8-bit integer a to all elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8 -FORCE_INLINE __m128i _mm_set1_epi8(signed char w) -{ - return vreinterpretq_m128i_s8(vdupq_n_s8(w)); -} - -// Broadcast double-precision (64-bit) floating-point value a to all elements of -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd -FORCE_INLINE __m128d _mm_set1_pd(double d) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vdupq_n_f64(d)); -#else - return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d)); -#endif -} - -// Set packed 16-bit integers in dst with the supplied values in reverse order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16 -FORCE_INLINE __m128i _mm_setr_epi16(short w0, - short w1, - short w2, - short w3, - short w4, - short w5, - short w6, - short w7) -{ - int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7}; - return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); -} - -// Set packed 32-bit integers in dst with the supplied values in reverse order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32 -FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) -{ - int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; - return vreinterpretq_m128i_s32(vld1q_s32(data)); -} - -// Set packed 64-bit integers in dst with the supplied values in reverse order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 -FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) -{ - return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); -} - -// Set packed 8-bit integers in dst with the supplied values in reverse order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8 -FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, - signed char b1, - signed char b2, - signed char b3, - signed char b4, - signed char b5, - signed char b6, - signed char b7, - signed char b8, - signed char b9, - signed char b10, - signed char b11, - signed char b12, - signed char b13, - signed char b14, - signed char b15) -{ - int8_t ALIGN_STRUCT(16) - data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, - (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, - (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, - (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; - return (__m128i) vld1q_s8(data); -} - -// Set packed double-precision (64-bit) floating-point elements in dst with the -// supplied values in reverse order. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd -FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) -{ - return _mm_set_pd(e0, e1); -} - -// Return vector of type __m128d with all elements set to zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd -FORCE_INLINE __m128d _mm_setzero_pd(void) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vdupq_n_f64(0)); -#else - return vreinterpretq_m128d_f32(vdupq_n_f32(0)); -#endif -} - -// Return vector of type __m128i with all elements set to zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128 -FORCE_INLINE __m128i _mm_setzero_si128(void) -{ - return vreinterpretq_m128i_s32(vdupq_n_s32(0)); -} - -// Shuffle 32-bit integers in a using the control in imm8, and store the results -// in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32 -// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, -// __constrange(0,255) int imm) -#if defined(_sse2neon_shuffle) -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - int32x4_t _input = vreinterpretq_s32_m128i(a); \ - int32x4_t _shuf = \ - vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ - vreinterpretq_m128i_s32(_shuf); \ - }) -#else // generic -#define _mm_shuffle_epi32(a, imm) \ - _sse2neon_define1( \ - __m128i, a, __m128i ret; switch (imm) { \ - case _MM_SHUFFLE(1, 0, 3, 2): \ - ret = _mm_shuffle_epi_1032(_a); \ - break; \ - case _MM_SHUFFLE(2, 3, 0, 1): \ - ret = _mm_shuffle_epi_2301(_a); \ - break; \ - case _MM_SHUFFLE(0, 3, 2, 1): \ - ret = _mm_shuffle_epi_0321(_a); \ - break; \ - case _MM_SHUFFLE(2, 1, 0, 3): \ - ret = _mm_shuffle_epi_2103(_a); \ - break; \ - case _MM_SHUFFLE(1, 0, 1, 0): \ - ret = _mm_shuffle_epi_1010(_a); \ - break; \ - case _MM_SHUFFLE(1, 0, 0, 1): \ - ret = _mm_shuffle_epi_1001(_a); \ - break; \ - case _MM_SHUFFLE(0, 1, 0, 1): \ - ret = _mm_shuffle_epi_0101(_a); \ - break; \ - case _MM_SHUFFLE(2, 2, 1, 1): \ - ret = _mm_shuffle_epi_2211(_a); \ - break; \ - case _MM_SHUFFLE(0, 1, 2, 2): \ - ret = _mm_shuffle_epi_0122(_a); \ - break; \ - case _MM_SHUFFLE(3, 3, 3, 2): \ - ret = _mm_shuffle_epi_3332(_a); \ - break; \ - case _MM_SHUFFLE(0, 0, 0, 0): \ - ret = _mm_shuffle_epi32_splat(_a, 0); \ - break; \ - case _MM_SHUFFLE(1, 1, 1, 1): \ - ret = _mm_shuffle_epi32_splat(_a, 1); \ - break; \ - case _MM_SHUFFLE(2, 2, 2, 2): \ - ret = _mm_shuffle_epi32_splat(_a, 2); \ - break; \ - case _MM_SHUFFLE(3, 3, 3, 3): \ - ret = _mm_shuffle_epi32_splat(_a, 3); \ - break; \ - default: \ - ret = _mm_shuffle_epi32_default(_a, (imm)); \ - break; \ - } _sse2neon_return(ret);) -#endif - -// Shuffle double-precision (64-bit) floating-point elements using the control -// in imm8, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd -#ifdef _sse2neon_shuffle -#define _mm_shuffle_pd(a, b, imm8) \ - vreinterpretq_m128d_s64( \ - vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ - imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) -#else -#define _mm_shuffle_pd(a, b, imm8) \ - _mm_castsi128_pd(_mm_set_epi64x( \ - vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \ - vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1))) -#endif - -// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, -// __constrange(0,255) int imm) -#if defined(_sse2neon_shuffle) -#define _mm_shufflehi_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = \ - vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ - (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ - (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128i_s16(_shuf); \ - }) -#else // generic -#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) -#endif - -// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, -// __constrange(0,255) int imm) -#if defined(_sse2neon_shuffle) -#define _mm_shufflelo_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = vshuffleq_s16( \ - _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ - (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ - vreinterpretq_m128i_s16(_shuf); \ - }) -#else // generic -#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm)) -#endif - -// Shift packed 16-bit integers in a left by count while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 -FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) -{ - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (_sse2neon_unlikely(c & ~15)) - return _mm_setzero_si128(); - - int16x8_t vc = vdupq_n_s16((int16_t) c); - return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc)); -} - -// Shift packed 32-bit integers in a left by count while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 -FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) -{ - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (_sse2neon_unlikely(c & ~31)) - return _mm_setzero_si128(); - - int32x4_t vc = vdupq_n_s32((int32_t) c); - return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc)); -} - -// Shift packed 64-bit integers in a left by count while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 -FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) -{ - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (_sse2neon_unlikely(c & ~63)) - return _mm_setzero_si128(); - - int64x2_t vc = vdupq_n_s64((int64_t) c); - return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc)); -} - -// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 -FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - return vreinterpretq_m128i_s16( - vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm))); -} - -// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 -FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~31)) - return _mm_setzero_si128(); - return vreinterpretq_m128i_s32( - vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm))); -} - -// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 -FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~63)) - return _mm_setzero_si128(); - return vreinterpretq_m128i_s64( - vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm))); -} - -// Shift a left by imm8 bytes while shifting in zeros, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 -#define _mm_slli_si128(a, imm) \ - _sse2neon_define1( \ - __m128i, a, int8x16_t ret; \ - if (_sse2neon_unlikely(imm == 0)) ret = vreinterpretq_s8_m128i(_a); \ - else if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \ - else ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(_a), \ - ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ - _sse2neon_return(vreinterpretq_m128i_s8(ret));) - -// Compute the square root of packed double-precision (64-bit) floating-point -// elements in a, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd -FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a))); -#else - double a0 = sqrt(((double *) &a)[0]); - double a1 = sqrt(((double *) &a)[1]); - return _mm_set_pd(a1, a0); -#endif -} - -// Compute the square root of the lower double-precision (64-bit) floating-point -// element in b, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd -FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return _mm_move_sd(a, _mm_sqrt_pd(b)); -#else - return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0])); -#endif -} - -// Shift packed 16-bit integers in a right by count while shifting in sign bits, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 -FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) -{ - int64_t c = vgetq_lane_s64(count, 0); - if (_sse2neon_unlikely(c & ~15)) - return _mm_cmplt_epi16(a, _mm_setzero_si128()); - return vreinterpretq_m128i_s16( - vshlq_s16((int16x8_t) a, vdupq_n_s16((int) -c))); -} - -// Shift packed 32-bit integers in a right by count while shifting in sign bits, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 -FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) -{ - int64_t c = vgetq_lane_s64(count, 0); - if (_sse2neon_unlikely(c & ~31)) - return _mm_cmplt_epi32(a, _mm_setzero_si128()); - return vreinterpretq_m128i_s32( - vshlq_s32((int32x4_t) a, vdupq_n_s32((int) -c))); -} - -// Shift packed 16-bit integers in a right by imm8 while shifting in sign -// bits, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 -FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) -{ - const int count = (imm & ~15) ? 15 : imm; - return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count)); -} - -// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 -// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srai_epi32(a, imm) \ - _sse2neon_define0( \ - __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) == 0)) { \ - ret = _a; \ - } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ - ret = vreinterpretq_m128i_s32( \ - vshlq_s32(vreinterpretq_s32_m128i(_a), vdupq_n_s32(-(imm)))); \ - } else { \ - ret = vreinterpretq_m128i_s32( \ - vshrq_n_s32(vreinterpretq_s32_m128i(_a), 31)); \ - } _sse2neon_return(ret);) - -// Shift packed 16-bit integers in a right by count while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 -FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) -{ - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (_sse2neon_unlikely(c & ~15)) - return _mm_setzero_si128(); - - int16x8_t vc = vdupq_n_s16(-(int16_t) c); - return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc)); -} - -// Shift packed 32-bit integers in a right by count while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 -FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) -{ - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (_sse2neon_unlikely(c & ~31)) - return _mm_setzero_si128(); - - int32x4_t vc = vdupq_n_s32(-(int32_t) c); - return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc)); -} - -// Shift packed 64-bit integers in a right by count while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 -FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) -{ - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (_sse2neon_unlikely(c & ~63)) - return _mm_setzero_si128(); - - int64x2_t vc = vdupq_n_s64(-(int64_t) c); - return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc)); -} - -// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 -#define _mm_srli_epi16(a, imm) \ - _sse2neon_define0( \ - __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u16( \ - vshlq_u16(vreinterpretq_u16_m128i(_a), vdupq_n_s16(-(imm)))); \ - } _sse2neon_return(ret);) - -// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 -// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srli_epi32(a, imm) \ - _sse2neon_define0( \ - __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~31)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u32( \ - vshlq_u32(vreinterpretq_u32_m128i(_a), vdupq_n_s32(-(imm)))); \ - } _sse2neon_return(ret);) - -// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 -#define _mm_srli_epi64(a, imm) \ - _sse2neon_define0( \ - __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~63)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u64( \ - vshlq_u64(vreinterpretq_u64_m128i(_a), vdupq_n_s64(-(imm)))); \ - } _sse2neon_return(ret);) - -// Shift a right by imm8 bytes while shifting in zeros, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 -#define _mm_srli_si128(a, imm) \ - _sse2neon_define1( \ - __m128i, a, int8x16_t ret; \ - if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \ - else ret = vextq_s8(vreinterpretq_s8_m128i(_a), vdupq_n_s8(0), \ - (imm > 15 ? 0 : imm)); \ - _sse2neon_return(vreinterpretq_m128i_s8(ret));) - -// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary -// or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd -FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a)); -#else - vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a)); -#endif -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 -FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a)); - vst1q_f64((float64_t *) mem_addr, - vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low))); -#else - float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a)); - vst1q_f32((float32_t *) mem_addr, - vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low))); -#endif -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// memory. mem_addr does not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd -FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); -#else - vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a))); -#endif -} - -// Store 128-bits of integer data from a into memory. mem_addr must be aligned -// on a 16-byte boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128 -FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) -{ - vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd -#define _mm_store1_pd _mm_store_pd1 - -// Store the upper double-precision (64-bit) floating-point element from a into -// memory. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd -FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a))); -#else - vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a))); -#endif -} - -// Store 64-bit integer from the first element of a into memory. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64 -FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) -{ - vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// memory. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd -FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); -#else - vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a))); -#endif -} - -// Store 2 double-precision (64-bit) floating-point elements from a into memory -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd -FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) -{ - float32x4_t f = vreinterpretq_f32_m128d(a); - _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2))); -} - -// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from a into memory. mem_addr does not need to be aligned on any -// particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd -FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) -{ - _mm_store_pd(mem_addr, a); -} - -// Store 128-bits of integer data from a into memory. mem_addr does not need to -// be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 -FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) -{ - vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); -} - -// Store 32-bit integer from the first element of a into memory. mem_addr does -// not need to be aligned on any particular boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 -FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) -{ - vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); -} - -// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from a into memory using a non-temporal memory hint. mem_addr must -// be aligned on a 16-byte boundary or a general-protection exception may be -// generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd -FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) -{ -#if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (__m128d *) p); -#elif defined(__aarch64__) || defined(_M_ARM64) - vst1q_f64(p, vreinterpretq_f64_m128d(a)); -#else - vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a)); -#endif -} - -// Store 128-bits of integer data from a into memory using a non-temporal memory -// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection -// exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128 -FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) -{ -#if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, p); -#else - vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a)); -#endif -} - -// Store 32-bit integer a into memory using a non-temporal hint to minimize -// cache pollution. If the cache line containing address mem_addr is already in -// the cache, the cache will be updated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 -FORCE_INLINE void _mm_stream_si32(int *p, int a) -{ - vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); -} - -// Store 64-bit integer a into memory using a non-temporal hint to minimize -// cache pollution. If the cache line containing address mem_addr is already in -// the cache, the cache will be updated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 -FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) -{ - vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); -} - -// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 -FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32 -FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64 -FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s64( - vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -} - -// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 -FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Subtract packed double-precision (64-bit) floating-point elements in b from -// packed double-precision (64-bit) floating-point elements in a, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd -FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] - db[0]; - c[1] = da[1] - db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Subtract the lower double-precision (64-bit) floating-point element in b from -// the lower double-precision (64-bit) floating-point element in a, store the -// result in the lower element of dst, and copy the upper element from a to the -// upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd -FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_sub_pd(a, b)); -} - -// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 -FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) -{ - return vreinterpret_m64_s64( - vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); -} - -// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a -// using saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16 -FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a -// using saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8 -FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit -// integers in a using saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16 -FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit -// integers in a using saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8 -FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -#define _mm_ucomieq_sd _mm_comieq_sd -#define _mm_ucomige_sd _mm_comige_sd -#define _mm_ucomigt_sd _mm_comigt_sd -#define _mm_ucomile_sd _mm_comile_sd -#define _mm_ucomilt_sd _mm_comilt_sd -#define _mm_ucomineq_sd _mm_comineq_sd - -// Return vector of type __m128d with undefined elements. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd -FORCE_INLINE __m128d _mm_undefined_pd(void) -{ -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#endif - __m128d a; -#if defined(_MSC_VER) && !defined(__clang__) - a = _mm_setzero_pd(); -#endif - return a; -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic pop -#endif -} - -// Unpack and interleave 16-bit integers from the high half of a and b, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16 -FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s16( - vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -#else - int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); - int16x4x2_t result = vzip_s16(a1, b1); - return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave 32-bit integers from the high half of a and b, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32 -FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s32( - vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -#else - int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); - int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); - int32x2x2_t result = vzip_s32(a1, b1); - return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave 64-bit integers from the high half of a and b, and -// store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64 -FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s64( - vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -#else - int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); - int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); - return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); -#endif -} - -// Unpack and interleave 8-bit integers from the high half of a and b, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8 -FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s8( - vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -#else - int8x8_t a1 = - vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); - int8x8_t b1 = - vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); - int8x8x2_t result = vzip_s8(a1, b1); - return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave double-precision (64-bit) floating-point elements from -// the high half of a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd -FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - return vreinterpretq_m128d_s64( - vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)), - vget_high_s64(vreinterpretq_s64_m128d(b)))); -#endif -} - -// Unpack and interleave 16-bit integers from the low half of a and b, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16 -FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s16( - vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -#else - int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); - int16x4x2_t result = vzip_s16(a1, b1); - return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave 32-bit integers from the low half of a and b, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32 -FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s32( - vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -#else - int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); - int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); - int32x2x2_t result = vzip_s32(a1, b1); - return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave 64-bit integers from the low half of a and b, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64 -FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s64( - vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -#else - int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); - int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); - return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); -#endif -} - -// Unpack and interleave 8-bit integers from the low half of a and b, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8 -FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s8( - vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -#else - int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); - int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); - int8x8x2_t result = vzip_s8(a1, b1); - return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave double-precision (64-bit) floating-point elements from -// the low half of a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd -FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - return vreinterpretq_m128d_s64( - vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)), - vget_low_s64(vreinterpretq_s64_m128d(b)))); -#endif -} - -// Compute the bitwise XOR of packed double-precision (64-bit) floating-point -// elements in a and b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd -FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_s64( - veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); -} - -// Compute the bitwise XOR of 128 bits (representing integer data) in a and b, -// and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128 -FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -/* SSE3 */ - -// Alternatively add and subtract packed double-precision (64-bit) -// floating-point elements in a to/from packed elements in b, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd -FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) -{ - _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), - vreinterpretq_f64_m128d(b), - vreinterpretq_f64_m128d(mask))); -#else - return _mm_add_pd(_mm_mul_pd(b, mask), a); -#endif -} - -// Alternatively add and subtract packed single-precision (32-bit) -// floating-point elements in a to/from packed elements in b, and store the -// results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps -FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) -{ - _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_FMA) /* VFPv4+ */ - return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), - vreinterpretq_f32_m128(mask), - vreinterpretq_f32_m128(b))); -#else - return _mm_add_ps(_mm_mul_ps(b, mask), a); -#endif -} - -// Horizontally add adjacent pairs of double-precision (64-bit) floating-point -// elements in a and b, and pack the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd -FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[] = {da[0] + da[1], db[0] + db[1]}; - return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); -#endif -} - -// Horizontally add adjacent pairs of single-precision (32-bit) floating-point -// elements in a and b, and pack the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps -FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32( - vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32( - vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); -#endif -} - -// Horizontally subtract adjacent pairs of double-precision (64-bit) -// floating-point elements in a and b, and pack the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd -FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - float64x2_t a = vreinterpretq_f64_m128d(_a); - float64x2_t b = vreinterpretq_f64_m128d(_b); - return vreinterpretq_m128d_f64( - vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); -#else - double *da = (double *) &_a; - double *db = (double *) &_b; - double c[] = {da[0] - da[1], db[0] - db[1]}; - return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); -#endif -} - -// Horizontally subtract adjacent pairs of single-precision (32-bit) -// floating-point elements in a and b, and pack the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps -FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) -{ - float32x4_t a = vreinterpretq_f32_m128(_a); - float32x4_t b = vreinterpretq_f32_m128(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32( - vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); -#else - float32x4x2_t c = vuzpq_f32(a, b); - return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); -#endif -} - -// Load 128-bits of integer data from unaligned memory into dst. This intrinsic -// may perform better than _mm_loadu_si128 when the data crosses a cache line -// boundary. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 -#define _mm_lddqu_si128 _mm_loadu_si128 - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd -#define _mm_loaddup_pd _mm_load1_pd - -// Duplicate the low double-precision (64-bit) floating-point element from a, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd -FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64( - vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); -#else - return vreinterpretq_m128d_u64( - vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0))); -#endif -} - -// Duplicate odd-indexed single-precision (32-bit) floating-point elements -// from a, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps -FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32( - vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); -#elif defined(_sse2neon_shuffle) - return vreinterpretq_m128_f32(vshuffleq_s32( - vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); -#else - float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); - float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3); - float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -#endif -} - -// Duplicate even-indexed single-precision (32-bit) floating-point elements -// from a, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps -FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128_f32( - vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); -#elif defined(_sse2neon_shuffle) - return vreinterpretq_m128_f32(vshuffleq_s32( - vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); -#else - float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2); - float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -#endif -} - -/* SSSE3 */ - -// Compute the absolute value of packed signed 16-bit integers in a, and store -// the unsigned results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 -FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) -{ - return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); -} - -// Compute the absolute value of packed signed 32-bit integers in a, and store -// the unsigned results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 -FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) -{ - return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); -} - -// Compute the absolute value of packed signed 8-bit integers in a, and store -// the unsigned results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 -FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) -{ - return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); -} - -// Compute the absolute value of packed signed 16-bit integers in a, and store -// the unsigned results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 -FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) -{ - return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); -} - -// Compute the absolute value of packed signed 32-bit integers in a, and store -// the unsigned results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 -FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) -{ - return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); -} - -// Compute the absolute value of packed signed 8-bit integers in a, and store -// the unsigned results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 -FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) -{ - return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); -} - -// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift -// the result right by imm8 bytes, and store the low 16 bytes in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 -#if defined(__GNUC__) && !defined(__clang__) -#define _mm_alignr_epi8(a, b, imm) \ - __extension__({ \ - uint8x16_t _a = vreinterpretq_u8_m128i(a); \ - uint8x16_t _b = vreinterpretq_u8_m128i(b); \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) & ~31)) \ - ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ - else if (imm >= 16) \ - ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ - else \ - ret = \ - vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ - ret; \ - }) - -#else -#define _mm_alignr_epi8(a, b, imm) \ - _sse2neon_define2( \ - __m128i, a, b, uint8x16_t __a = vreinterpretq_u8_m128i(_a); \ - uint8x16_t __b = vreinterpretq_u8_m128i(_b); __m128i ret; \ - if (_sse2neon_unlikely((imm) & ~31)) ret = \ - vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ - else if (imm >= 16) ret = \ - _mm_srli_si128(_a, imm >= 16 ? imm - 16 : 0); \ - else ret = \ - vreinterpretq_m128i_u8(vextq_u8(__b, __a, imm < 16 ? imm : 0)); \ - _sse2neon_return(ret);) - -#endif - -// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift -// the result right by imm8 bytes, and store the low 8 bytes in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 -#define _mm_alignr_pi8(a, b, imm) \ - _sse2neon_define2( \ - __m64, a, b, __m64 ret; if (_sse2neon_unlikely((imm) >= 16)) { \ - ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ - } else { \ - uint8x8_t tmp_low; \ - uint8x8_t tmp_high; \ - if ((imm) >= 8) { \ - const int idx = (imm) -8; \ - tmp_low = vreinterpret_u8_m64(_a); \ - tmp_high = vdup_n_u8(0); \ - ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ - } else { \ - const int idx = (imm); \ - tmp_low = vreinterpret_u8_m64(_b); \ - tmp_high = vreinterpret_u8_m64(_a); \ - ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ - } \ - } _sse2neon_return(ret);) - -// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the -// signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16 -FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) -{ - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s16(vpaddq_s16(a, b)); -#else - return vreinterpretq_m128i_s16( - vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)), - vpadd_s16(vget_low_s16(b), vget_high_s16(b)))); -#endif -} - -// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the -// signed 32-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32 -FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) -{ - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); -#else - return vreinterpretq_m128i_s32( - vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), - vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); -#endif -} - -// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the -// signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 -FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) -{ - return vreinterpret_m64_s16( - vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); -} - -// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the -// signed 32-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 -FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) -{ - return vreinterpret_m64_s32( - vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); -} - -// Horizontally add adjacent pairs of signed 16-bit integers in a and b using -// saturation, and pack the signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16 -FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); - return vreinterpretq_s64_s16( - vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); -#else - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Saturated add - return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357)); -#endif -} - -// Horizontally add adjacent pairs of signed 16-bit integers in a and b using -// saturation, and pack the signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 -FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) -{ - int16x4_t a = vreinterpret_s16_m64(_a); - int16x4_t b = vreinterpret_s16_m64(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); -#else - int16x4x2_t res = vuzp_s16(a, b); - return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1])); -#endif -} - -// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack -// the signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 -FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) -{ - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s16( - vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); -#else - int16x8x2_t c = vuzpq_s16(a, b); - return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1])); -#endif -} - -// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack -// the signed 32-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 -FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) -{ - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s32( - vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); -#else - int32x4x2_t c = vuzpq_s32(a, b); - return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1])); -#endif -} - -// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack -// the signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 -FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) -{ - int16x4_t a = vreinterpret_s16_m64(_a); - int16x4_t b = vreinterpret_s16_m64(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); -#else - int16x4x2_t c = vuzp_s16(a, b); - return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1])); -#endif -} - -// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack -// the signed 32-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 -FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) -{ - int32x2_t a = vreinterpret_s32_m64(_a); - int32x2_t b = vreinterpret_s32_m64(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); -#else - int32x2x2_t c = vuzp_s32(a, b); - return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1])); -#endif -} - -// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b -// using saturation, and pack the signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 -FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) -{ - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s16( - vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); -#else - int16x8x2_t c = vuzpq_s16(a, b); - return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1])); -#endif -} - -// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b -// using saturation, and pack the signed 16-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 -FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) -{ - int16x4_t a = vreinterpret_s16_m64(_a); - int16x4_t b = vreinterpret_s16_m64(_b); -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); -#else - int16x4x2_t c = vuzp_s16(a, b); - return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1])); -#endif -} - -// Vertically multiply each unsigned 8-bit integer from a with the corresponding -// signed 8-bit integer from b, producing intermediate signed 16-bit integers. -// Horizontally add adjacent pairs of intermediate signed 16-bit integers, -// and pack the saturated results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16 -FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - uint8x16_t a = vreinterpretq_u8_m128i(_a); - int8x16_t b = vreinterpretq_s8_m128i(_b); - int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), - vmovl_s8(vget_low_s8(b))); - int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))), - vmovl_s8(vget_high_s8(b))); - return vreinterpretq_m128i_s16( - vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th))); -#else - // This would be much simpler if x86 would choose to zero extend OR sign - // extend, not both. This could probably be optimized better. - uint16x8_t a = vreinterpretq_u16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); - - // Zero extend a - int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8)); - int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00))); - - // Sign extend by shifting left then shifting right. - int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8); - int16x8_t b_odd = vshrq_n_s16(b, 8); - - // multiply - int16x8_t prod1 = vmulq_s16(a_even, b_even); - int16x8_t prod2 = vmulq_s16(a_odd, b_odd); - - // saturated add - return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2)); -#endif -} - -// Vertically multiply each unsigned 8-bit integer from a with the corresponding -// signed 8-bit integer from b, producing intermediate signed 16-bit integers. -// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and -// pack the saturated results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 -FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) -{ - uint16x4_t a = vreinterpret_u16_m64(_a); - int16x4_t b = vreinterpret_s16_m64(_b); - - // Zero extend a - int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8)); - int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff))); - - // Sign extend by shifting left then shifting right. - int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8); - int16x4_t b_odd = vshr_n_s16(b, 8); - - // multiply - int16x4_t prod1 = vmul_s16(a_even, b_even); - int16x4_t prod2 = vmul_s16(a_odd, b_odd); - - // saturated add - return vreinterpret_m64_s16(vqadd_s16(prod1, prod2)); -} - -// Multiply packed signed 16-bit integers in a and b, producing intermediate -// signed 32-bit integers. Shift right by 15 bits while rounding up, and store -// the packed 16-bit integers in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16 -FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) -{ - // Has issues due to saturation - // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b)); - - // Multiply - int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), - vget_low_s16(vreinterpretq_s16_m128i(b))); - int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), - vget_high_s16(vreinterpretq_s16_m128i(b))); - - // Rounding narrowing shift right - // narrow = (int16_t)((mul + 16384) >> 15); - int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15); - int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15); - - // Join together - return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi)); -} - -// Multiply packed signed 16-bit integers in a and b, producing intermediate -// signed 32-bit integers. Truncate each intermediate integer to the 18 most -// significant bits, round by adding 1, and store bits [16:1] to dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 -FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) -{ - int32x4_t mul_extend = - vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b))); - - // Rounding narrowing shift right - return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15)); -} - -// Shuffle packed 8-bit integers in a according to shuffle control mask in the -// corresponding 8-bit element of b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 -FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) -{ - int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a - uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b - uint8x16_t idx_masked = - vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); -#elif defined(__GNUC__) - int8x16_t ret; - // %e and %f represent the even and odd D registers - // respectively. - __asm__ __volatile__( - "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n" - "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n" - : [ret] "=&w"(ret) - : [tbl] "w"(tbl), [idx] "w"(idx_masked)); - return vreinterpretq_m128i_s8(ret); -#else - // use this line if testing on aarch64 - int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)}; - return vreinterpretq_m128i_s8( - vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)), - vtbl2_s8(a_split, vget_high_u8(idx_masked)))); -#endif -} - -// Shuffle packed 8-bit integers in a according to shuffle control mask in the -// corresponding 8-bit element of b, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 -FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) -{ - const int8x8_t controlMask = - vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07))); - int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask); - return vreinterpret_m64_s8(res); -} - -// Negate packed 16-bit integers in a when the corresponding signed -// 16-bit integer in b is negative, and store the results in dst. -// Element in dst are zeroed out when the corresponding element -// in b is zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16 -FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) -{ - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); - - // signed shift right: faster than vclt - // (b < 0) ? 0xFFFF : 0 - uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15)); - // (b == 0) ? 0xFFFF : 0 -#if defined(__aarch64__) || defined(_M_ARM64) - int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b)); -#else - int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0))); -#endif - - // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative - // 'a') based on ltMask - int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a); - // res = masked & (~zeroMask) - int16x8_t res = vbicq_s16(masked, zeroMask); - return vreinterpretq_m128i_s16(res); -} - -// Negate packed 32-bit integers in a when the corresponding signed -// 32-bit integer in b is negative, and store the results in dst. -// Element in dst are zeroed out when the corresponding element -// in b is zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32 -FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) -{ - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - - // signed shift right: faster than vclt - // (b < 0) ? 0xFFFFFFFF : 0 - uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31)); - - // (b == 0) ? 0xFFFFFFFF : 0 -#if defined(__aarch64__) || defined(_M_ARM64) - int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b)); -#else - int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0))); -#endif - - // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative - // 'a') based on ltMask - int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a); - // res = masked & (~zeroMask) - int32x4_t res = vbicq_s32(masked, zeroMask); - return vreinterpretq_m128i_s32(res); -} - -// Negate packed 8-bit integers in a when the corresponding signed -// 8-bit integer in b is negative, and store the results in dst. -// Element in dst are zeroed out when the corresponding element -// in b is zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8 -FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) -{ - int8x16_t a = vreinterpretq_s8_m128i(_a); - int8x16_t b = vreinterpretq_s8_m128i(_b); - - // signed shift right: faster than vclt - // (b < 0) ? 0xFF : 0 - uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7)); - - // (b == 0) ? 0xFF : 0 -#if defined(__aarch64__) || defined(_M_ARM64) - int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b)); -#else - int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); -#endif - - // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a') - // based on ltMask - int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); - // res = masked & (~zeroMask) - int8x16_t res = vbicq_s8(masked, zeroMask); - - return vreinterpretq_m128i_s8(res); -} - -// Negate packed 16-bit integers in a when the corresponding signed 16-bit -// integer in b is negative, and store the results in dst. Element in dst are -// zeroed out when the corresponding element in b is zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 -FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) -{ - int16x4_t a = vreinterpret_s16_m64(_a); - int16x4_t b = vreinterpret_s16_m64(_b); - - // signed shift right: faster than vclt - // (b < 0) ? 0xFFFF : 0 - uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15)); - - // (b == 0) ? 0xFFFF : 0 -#if defined(__aarch64__) || defined(_M_ARM64) - int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b)); -#else - int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); -#endif - - // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a') - // based on ltMask - int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a); - // res = masked & (~zeroMask) - int16x4_t res = vbic_s16(masked, zeroMask); - - return vreinterpret_m64_s16(res); -} - -// Negate packed 32-bit integers in a when the corresponding signed 32-bit -// integer in b is negative, and store the results in dst. Element in dst are -// zeroed out when the corresponding element in b is zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 -FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) -{ - int32x2_t a = vreinterpret_s32_m64(_a); - int32x2_t b = vreinterpret_s32_m64(_b); - - // signed shift right: faster than vclt - // (b < 0) ? 0xFFFFFFFF : 0 - uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31)); - - // (b == 0) ? 0xFFFFFFFF : 0 -#if defined(__aarch64__) || defined(_M_ARM64) - int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b)); -#else - int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); -#endif - - // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a') - // based on ltMask - int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a); - // res = masked & (~zeroMask) - int32x2_t res = vbic_s32(masked, zeroMask); - - return vreinterpret_m64_s32(res); -} - -// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer -// in b is negative, and store the results in dst. Element in dst are zeroed out -// when the corresponding element in b is zero. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 -FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) -{ - int8x8_t a = vreinterpret_s8_m64(_a); - int8x8_t b = vreinterpret_s8_m64(_b); - - // signed shift right: faster than vclt - // (b < 0) ? 0xFF : 0 - uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7)); - - // (b == 0) ? 0xFF : 0 -#if defined(__aarch64__) || defined(_M_ARM64) - int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b)); -#else - int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); -#endif - - // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a') - // based on ltMask - int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a); - // res = masked & (~zeroMask) - int8x8_t res = vbic_s8(masked, zeroMask); - - return vreinterpret_m64_s8(res); -} - -/* SSE4.1 */ - -// Blend packed 16-bit integers from a and b using control mask imm8, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16 -// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, -// __constrange(0,255) int imm) -#define _mm_blend_epi16(a, b, imm) \ - _sse2neon_define2( \ - __m128i, a, b, \ - const uint16_t _mask[8] = \ - _sse2neon_init(((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0); \ - uint16x8_t _mask_vec = vld1q_u16(_mask); \ - uint16x8_t __a = vreinterpretq_u16_m128i(_a); \ - uint16x8_t __b = vreinterpretq_u16_m128i(_b); _sse2neon_return( \ - vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, __b, __a)));) - -// Blend packed double-precision (64-bit) floating-point elements from a and b -// using control mask imm8, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd -#define _mm_blend_pd(a, b, imm) \ - _sse2neon_define2( \ - __m128d, a, b, \ - const uint64_t _mask[2] = \ - _sse2neon_init(((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ - ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)); \ - uint64x2_t _mask_vec = vld1q_u64(_mask); \ - uint64x2_t __a = vreinterpretq_u64_m128d(_a); \ - uint64x2_t __b = vreinterpretq_u64_m128d(_b); _sse2neon_return( \ - vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, __b, __a)));) - -// Blend packed single-precision (32-bit) floating-point elements from a and b -// using mask, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps -FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) -{ - const uint32_t ALIGN_STRUCT(16) - data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, - ((imm8) & (1 << 1)) ? UINT32_MAX : 0, - ((imm8) & (1 << 2)) ? UINT32_MAX : 0, - ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; - uint32x4_t mask = vld1q_u32(data); - float32x4_t a = vreinterpretq_f32_m128(_a); - float32x4_t b = vreinterpretq_f32_m128(_b); - return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); -} - -// Blend packed 8-bit integers from a and b using mask, and store the results in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8 -FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) -{ - // Use a signed shift right to create a mask with the sign bit - uint8x16_t mask = - vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7)); - uint8x16_t a = vreinterpretq_u8_m128i(_a); - uint8x16_t b = vreinterpretq_u8_m128i(_b); - return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a)); -} - -// Blend packed double-precision (64-bit) floating-point elements from a and b -// using mask, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd -FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) -{ - uint64x2_t mask = - vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63)); -#if defined(__aarch64__) || defined(_M_ARM64) - float64x2_t a = vreinterpretq_f64_m128d(_a); - float64x2_t b = vreinterpretq_f64_m128d(_b); - return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a)); -#else - uint64x2_t a = vreinterpretq_u64_m128d(_a); - uint64x2_t b = vreinterpretq_u64_m128d(_b); - return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a)); -#endif -} - -// Blend packed single-precision (32-bit) floating-point elements from a and b -// using mask, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps -FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) -{ - // Use a signed shift right to create a mask with the sign bit - uint32x4_t mask = - vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31)); - float32x4_t a = vreinterpretq_f32_m128(_a); - float32x4_t b = vreinterpretq_f32_m128(_b); - return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); -} - -// Round the packed double-precision (64-bit) floating-point elements in a up -// to an integer value, and store the results as packed double-precision -// floating-point elements in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd -FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a))); -#else - double *f = (double *) &a; - return _mm_set_pd(ceil(f[1]), ceil(f[0])); -#endif -} - -// Round the packed single-precision (32-bit) floating-point elements in a up to -// an integer value, and store the results as packed single-precision -// floating-point elements in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps -FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); -#else - float *f = (float *) &a; - return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0])); -#endif -} - -// Round the lower double-precision (64-bit) floating-point element in b up to -// an integer value, store the result as a double-precision floating-point -// element in the lower element of dst, and copy the upper element from a to the -// upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd -FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_ceil_pd(b)); -} - -// Round the lower single-precision (32-bit) floating-point element in b up to -// an integer value, store the result as a single-precision floating-point -// element in the lower element of dst, and copy the upper 3 packed elements -// from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss -FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_ceil_ps(b)); -} - -// Compare packed 64-bit integers in a and b for equality, and store the results -// in dst -FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_u64( - vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b))); -#else - // ARMv7 lacks vceqq_u64 - // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) - uint32x4_t cmp = - vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)); - uint32x4_t swapped = vrev64q_u32(cmp); - return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped)); -#endif -} - -// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32 -FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) -{ - return vreinterpretq_m128i_s32( - vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); -} - -// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64 -FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) -{ - int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ - int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ - int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_s64(s64x2); -} - -// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64 -FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) -{ - return vreinterpretq_m128i_s64( - vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); -} - -// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16 -FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) -{ - int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ - int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - return vreinterpretq_m128i_s16(s16x8); -} - -// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store -// the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32 -FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) -{ - int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ - int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */ - return vreinterpretq_m128i_s32(s32x4); -} - -// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit -// integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64 -FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) -{ - int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ - int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */ - int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ - int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_s64(s64x2); -} - -// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32 -FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) -{ - return vreinterpretq_m128i_u32( - vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); -} - -// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64 -FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) -{ - uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ - uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ - uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_u64(u64x2); -} - -// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64 -FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) -{ - return vreinterpretq_m128i_u64( - vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a)))); -} - -// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 -FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) -{ - uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ - uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */ - return vreinterpretq_m128i_u16(u16x8); -} - -// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, -// and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32 -FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) -{ - uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ - uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ - return vreinterpretq_m128i_u32(u32x4); -} - -// Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed -// 64-bit integers, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64 -FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) -{ - uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ - uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */ - uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ - uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_u64(u64x2); -} - -// Conditionally multiply the packed double-precision (64-bit) floating-point -// elements in a and b using the high 4 bits in imm8, sum the four products, and -// conditionally store the sum in dst using the low 4 bits of imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd -FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) -{ - // Generate mask value from constant immediate bit value - const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0; - const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0; -#if !SSE2NEON_PRECISE_DP - const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0; - const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0; -#endif - // Conditional multiplication -#if !SSE2NEON_PRECISE_DP - __m128d mul = _mm_mul_pd(a, b); - const __m128d mulMask = - _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask)); - __m128d tmp = _mm_and_pd(mul, mulMask); -#else -#if defined(__aarch64__) || defined(_M_ARM64) - double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) * - vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0) - : 0; - double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) * - vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1) - : 0; -#else - double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0; - double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0; -#endif - __m128d tmp = _mm_set_pd(d1, d0); -#endif - // Sum the products -#if defined(__aarch64__) || defined(_M_ARM64) - double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp)); -#else - double sum = *((double *) &tmp) + *(((double *) &tmp) + 1); -#endif - // Conditionally store the sum - const __m128d sumMask = - _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask)); - __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask); - return res; -} - -// Conditionally multiply the packed single-precision (32-bit) floating-point -// elements in a and b using the high 4 bits in imm8, sum the four products, -// and conditionally store the sum in dst using the low 4 bits of imm. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps -FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) -{ - float32x4_t elementwise_prod = _mm_mul_ps(a, b); - -#if defined(__aarch64__) || defined(_M_ARM64) - /* shortcuts */ - if (imm == 0xFF) { - return _mm_set1_ps(vaddvq_f32(elementwise_prod)); - } - - if ((imm & 0x0F) == 0x0F) { - if (!(imm & (1 << 4))) - elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 0); - if (!(imm & (1 << 5))) - elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 1); - if (!(imm & (1 << 6))) - elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 2); - if (!(imm & (1 << 7))) - elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 3); - - return _mm_set1_ps(vaddvq_f32(elementwise_prod)); - } -#endif - - float s = 0.0f; - - if (imm & (1 << 4)) - s += vgetq_lane_f32(elementwise_prod, 0); - if (imm & (1 << 5)) - s += vgetq_lane_f32(elementwise_prod, 1); - if (imm & (1 << 6)) - s += vgetq_lane_f32(elementwise_prod, 2); - if (imm & (1 << 7)) - s += vgetq_lane_f32(elementwise_prod, 3); - - const float32_t res[4] = { - (imm & 0x1) ? s : 0.0f, - (imm & 0x2) ? s : 0.0f, - (imm & 0x4) ? s : 0.0f, - (imm & 0x8) ? s : 0.0f, - }; - return vreinterpretq_m128_f32(vld1q_f32(res)); -} - -// Extract a 32-bit integer from a, selected with imm8, and store the result in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32 -// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) -#define _mm_extract_epi32(a, imm) \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) - -// Extract a 64-bit integer from a, selected with imm8, and store the result in -// dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64 -// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) -#define _mm_extract_epi64(a, imm) \ - vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) - -// Extract an 8-bit integer from a, selected with imm8, and store the result in -// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a, -// __constrange(0,16) int imm) -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 -#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) - -// Extracts the selected single-precision (32-bit) floating-point from a. -// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm) -#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm)) - -// Round the packed double-precision (64-bit) floating-point elements in a down -// to an integer value, and store the results as packed double-precision -// floating-point elements in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd -FORCE_INLINE __m128d _mm_floor_pd(__m128d a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a))); -#else - double *f = (double *) &a; - return _mm_set_pd(floor(f[1]), floor(f[0])); -#endif -} - -// Round the packed single-precision (32-bit) floating-point elements in a down -// to an integer value, and store the results as packed single-precision -// floating-point elements in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps -FORCE_INLINE __m128 _mm_floor_ps(__m128 a) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); -#else - float *f = (float *) &a; - return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0])); -#endif -} - -// Round the lower double-precision (64-bit) floating-point element in b down to -// an integer value, store the result as a double-precision floating-point -// element in the lower element of dst, and copy the upper element from a to the -// upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd -FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_floor_pd(b)); -} - -// Round the lower single-precision (32-bit) floating-point element in b down to -// an integer value, store the result as a single-precision floating-point -// element in the lower element of dst, and copy the upper 3 packed elements -// from a to the upper elements of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss -FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_floor_ps(b)); -} - -// Copy a to dst, and insert the 32-bit integer i into dst at the location -// specified by imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32 -// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, -// __constrange(0,4) int imm) -#define _mm_insert_epi32(a, b, imm) \ - vreinterpretq_m128i_s32( \ - vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))) - -// Copy a to dst, and insert the 64-bit integer i into dst at the location -// specified by imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64 -// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, -// __constrange(0,2) int imm) -#define _mm_insert_epi64(a, b, imm) \ - vreinterpretq_m128i_s64( \ - vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))) - -// Copy a to dst, and insert the lower 8-bit integer from i into dst at the -// location specified by imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8 -// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, -// __constrange(0,16) int imm) -#define _mm_insert_epi8(a, b, imm) \ - vreinterpretq_m128i_s8(vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))) - -// Copy a to tmp, then insert a single-precision (32-bit) floating-point -// element from b into tmp using the control in imm8. Store tmp to dst using -// the mask in imm8 (elements are zeroed out when the corresponding bit is set). -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps -#define _mm_insert_ps(a, b, imm8) \ - _sse2neon_define2( \ - __m128, a, b, \ - float32x4_t tmp1 = \ - vsetq_lane_f32(vgetq_lane_f32(_b, (imm8 >> 6) & 0x3), \ - vreinterpretq_f32_m128(_a), 0); \ - float32x4_t tmp2 = \ - vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), \ - vreinterpretq_f32_m128(_a), ((imm8 >> 4) & 0x3)); \ - const uint32_t data[4] = \ - _sse2neon_init(((imm8) & (1 << 0)) ? UINT32_MAX : 0, \ - ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \ - ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \ - ((imm8) & (1 << 3)) ? UINT32_MAX : 0); \ - uint32x4_t mask = vld1q_u32(data); \ - float32x4_t all_zeros = vdupq_n_f32(0); \ - \ - _sse2neon_return(vreinterpretq_m128_f32( \ - vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))));) - -// Compare packed signed 32-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32 -FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compare packed signed 8-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 -FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed unsigned 16-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 -FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Compare packed unsigned 32-bit integers in a and b, and store packed maximum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 -FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); -} - -// Compare packed signed 32-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32 -FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compare packed signed 8-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 -FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed unsigned 16-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 -FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Compare packed unsigned 32-bit integers in a and b, and store packed minimum -// values in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 -FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); -} - -// Horizontally compute the minimum amongst the packed unsigned 16-bit integers -// in a, store the minimum and index in dst, and zero the remaining bits in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 -FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) -{ - __m128i dst; - uint16_t min, idx = 0; -#if defined(__aarch64__) || defined(_M_ARM64) - // Find the minimum value - min = vminvq_u16(vreinterpretq_u16_m128i(a)); - - // Get the index of the minimum value - static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; - uint16x8_t minv = vdupq_n_u16(min); - uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); - idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); -#else - // Find the minimum value - __m64 tmp; - tmp = vreinterpret_m64_u16( - vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), - vget_high_u16(vreinterpretq_u16_m128i(a)))); - tmp = vreinterpret_m64_u16( - vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); - tmp = vreinterpret_m64_u16( - vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); - min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); - // Get the index of the minimum value - int i; - for (i = 0; i < 8; i++) { - if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) { - idx = (uint16_t) i; - break; - } - a = _mm_srli_si128(a, 2); - } -#endif - // Generate result - dst = _mm_setzero_si128(); - dst = vreinterpretq_m128i_u16( - vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0)); - dst = vreinterpretq_m128i_u16( - vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1)); - return dst; -} - -// Compute the sum of absolute differences (SADs) of quadruplets of unsigned -// 8-bit integers in a compared to those in b, and store the 16-bit results in -// dst. Eight SADs are performed using one quadruplet from b and eight -// quadruplets from a. One quadruplet is selected from b starting at on the -// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit -// integers selected from a starting at the offset specified in imm8. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 -FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) -{ - uint8x16_t _a, _b; - - switch (imm & 0x4) { - case 0: - // do nothing - _a = vreinterpretq_u8_m128i(a); - break; - case 4: - _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a), - vreinterpretq_u32_m128i(a), 1)); - break; - default: -#if defined(__GNUC__) || defined(__clang__) - __builtin_unreachable(); -#elif defined(_MSC_VER) - __assume(0); -#endif - break; - } - - switch (imm & 0x3) { - case 0: - _b = vreinterpretq_u8_u32( - vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0))); - break; - case 1: - _b = vreinterpretq_u8_u32( - vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1))); - break; - case 2: - _b = vreinterpretq_u8_u32( - vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2))); - break; - case 3: - _b = vreinterpretq_u8_u32( - vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3))); - break; - default: -#if defined(__GNUC__) || defined(__clang__) - __builtin_unreachable(); -#elif defined(_MSC_VER) - __assume(0); -#endif - break; - } - - int16x8_t c04, c15, c26, c37; - uint8x8_t low_b = vget_low_u8(_b); - c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); - uint8x16_t _a_1 = vextq_u8(_a, _a, 1); - c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); - uint8x16_t _a_2 = vextq_u8(_a, _a, 2); - c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); - uint8x16_t _a_3 = vextq_u8(_a, _a, 3); - c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); -#if defined(__aarch64__) || defined(_M_ARM64) - // |0|4|2|6| - c04 = vpaddq_s16(c04, c26); - // |1|5|3|7| - c15 = vpaddq_s16(c15, c37); - - int32x4_t trn1_c = - vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); - int32x4_t trn2_c = - vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); - return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c), - vreinterpretq_s16_s32(trn2_c))); -#else - int16x4_t c01, c23, c45, c67; - c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15)); - c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37)); - c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15)); - c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37)); - - return vreinterpretq_m128i_s16( - vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67))); -#endif -} - -// Multiply the low signed 32-bit integers from each packed 64-bit element in -// a and b, and store the signed 64-bit results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32 -FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) -{ - // vmull_s32 upcasts instead of masking, so we downcast. - int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a)); - int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b)); - return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); -} - -// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit -// integers, and store the low 32 bits of the intermediate integers in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32 -FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Convert packed signed 32-bit integers from a and b to packed 16-bit integers -// using unsigned saturation, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32 -FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)), - vqmovun_s32(vreinterpretq_s32_m128i(b)))); -} - -// Round the packed double-precision (64-bit) floating-point elements in a using -// the rounding parameter, and store the results as packed double-precision -// floating-point elements in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd -FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - switch (rounding) { - case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): - return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a))); - case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): - return _mm_floor_pd(a); - case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): - return _mm_ceil_pd(a); - case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): - return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a))); - default: //_MM_FROUND_CUR_DIRECTION - return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a))); - } -#else - double *v_double = (double *) &a; - - if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || - (rounding == _MM_FROUND_CUR_DIRECTION && - _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { - double res[2], tmp; - for (int i = 0; i < 2; i++) { - tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i]; - double roundDown = floor(tmp); // Round down value - double roundUp = ceil(tmp); // Round up value - double diffDown = tmp - roundDown; - double diffUp = roundUp - tmp; - if (diffDown < diffUp) { - /* If it's closer to the round down value, then use it */ - res[i] = roundDown; - } else if (diffDown > diffUp) { - /* If it's closer to the round up value, then use it */ - res[i] = roundUp; - } else { - /* If it's equidistant between round up and round down value, - * pick the one which is an even number */ - double half = roundDown / 2; - if (half != floor(half)) { - /* If the round down value is odd, return the round up value - */ - res[i] = roundUp; - } else { - /* If the round up value is odd, return the round down value - */ - res[i] = roundDown; - } - } - res[i] = (v_double[i] < 0) ? -res[i] : res[i]; - } - return _mm_set_pd(res[1], res[0]); - } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || - (rounding == _MM_FROUND_CUR_DIRECTION && - _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { - return _mm_floor_pd(a); - } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || - (rounding == _MM_FROUND_CUR_DIRECTION && - _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { - return _mm_ceil_pd(a); - } - return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]), - v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0])); -#endif -} - -// Round the packed single-precision (32-bit) floating-point elements in a using -// the rounding parameter, and store the results as packed single-precision -// floating-point elements in dst. -// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps -FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) -{ -#if (defined(__aarch64__) || defined(_M_ARM64)) || \ - defined(__ARM_FEATURE_DIRECTED_ROUNDING) - switch (rounding) { - case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): - return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); - case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): - return _mm_floor_ps(a); - case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): - return _mm_ceil_ps(a); - case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): - return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a))); - default: //_MM_FROUND_CUR_DIRECTION - return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a))); - } -#else - float *v_float = (float *) &a; - - if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || - (rounding == _MM_FROUND_CUR_DIRECTION && - _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { - uint32x4_t signmask = vdupq_n_u32(0x80000000); - float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), - vdupq_n_f32(0.5f)); /* +/- 0.5 */ - int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( - vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ - int32x4_t r_trunc = vcvtq_s32_f32( - vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ - int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( - vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ - int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), - vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ - float32x4_t delta = vsubq_f32( - vreinterpretq_f32_m128(a), - vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ - uint32x4_t is_delta_half = - vceqq_f32(delta, half); /* delta == +/- 0.5 */ - return vreinterpretq_m128_f32( - vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal))); - } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || - (rounding == _MM_FROUND_CUR_DIRECTION && - _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { - return _mm_floor_ps(a); - } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || - (rounding == _MM_FROUND_CUR_DIRECTION && - _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { - return _mm_ceil_ps(a); - } - return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]), - v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]), - v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]), - v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0])); -#endif -} - -// Round the lower double-precision (64-bit) floating-point element in b using -// the rounding parameter, store the result as a double-precision floating-point -// element in the lower element of dst, and copy the upper element from a to the -// upper element of dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd -FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) -{ - return _mm_move_sd(a, _mm_round_pd(b, rounding)); -} - -// Round the lower single-precision (32-bit) floating-point element in b using -// the rounding parameter, store the result as a single-precision floating-point -// element in the lower element of dst, and copy the upper 3 packed elements -// from a to the upper elements of dst. Rounding is done according to the -// rounding[3:0] parameter, which can be one of: -// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and -// suppress exceptions -// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and -// suppress exceptions -// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress -// exceptions -// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress -// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see -// _MM_SET_ROUNDING_MODE -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss -FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) -{ - return _mm_move_ss(a, _mm_round_ps(b, rounding)); -} - -// Load 128-bits of integer data from memory into dst using a non-temporal -// memory hint. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 -FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) -{ -#if __has_builtin(__builtin_nontemporal_store) - return __builtin_nontemporal_load(p); -#else - return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p)); -#endif -} - -// Compute the bitwise NOT of a and then AND with a 128-bit vector containing -// all 1's, and return 1 if the result is zero, otherwise return 0. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones -FORCE_INLINE int _mm_test_all_ones(__m128i a) -{ - return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == - ~(uint64_t) 0; -} - -// Compute the bitwise AND of 128 bits (representing integer data) in a and -// mask, and return 1 if the result is zero, otherwise return 0. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros -FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) -{ - int64x2_t a_and_mask = - vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask)); - return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)); -} - -// Compute the bitwise AND of 128 bits (representing integer data) in a and -// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute -// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is -// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, -// otherwise return 0. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero -// Note: Argument names may be wrong in the Intel intrinsics guide. -FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) -{ - uint64x2_t v = vreinterpretq_u64_m128i(a); - uint64x2_t m = vreinterpretq_u64_m128i(mask); - - // find ones (set-bits) and zeros (clear-bits) under clip mask - uint64x2_t ones = vandq_u64(m, v); - uint64x2_t zeros = vbicq_u64(m, v); - - // If both 128-bit variables are populated (non-zero) then return 1. - // For comparision purposes, first compact each var down to 32-bits. - uint32x2_t reduced = vpmax_u32(vqmovn_u64(ones), vqmovn_u64(zeros)); - - // if folding minimum is non-zero then both vars must be non-zero - return (vget_lane_u32(vpmin_u32(reduced, reduced), 0) != 0); -} - -// Compute the bitwise AND of 128 bits (representing integer data) in a and b, -// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the -// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, -// otherwise set CF to 0. Return the CF value. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 -FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) -{ - int64x2_t s64 = - vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); - return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); -} - -// Compute the bitwise AND of 128 bits (representing integer data) in a and b, -// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the -// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, -// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, -// otherwise return 0. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 -#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) - -// Compute the bitwise AND of 128 bits (representing integer data) in a and b, -// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the -// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, -// otherwise set CF to 0. Return the ZF value. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 -FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) -{ - int64x2_t s64 = - vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)); - return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); -} - -/* SSE4.2 */ - -static const uint16_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask16b[8] = { - 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, -}; -static const uint8_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask8b[16] = { - 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, - 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, -}; - -/* specify the source data format */ -#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */ -#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */ -#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */ -#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */ - -/* specify the comparison operation */ -#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */ -#define _SIDD_CMP_RANGES 0x04 /* compare ranges */ -#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */ -#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */ - -/* specify the polarity */ -#define _SIDD_POSITIVE_POLARITY 0x00 -#define _SIDD_MASKED_POSITIVE_POLARITY 0x20 -#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */ -#define _SIDD_MASKED_NEGATIVE_POLARITY \ - 0x30 /* negate results only before end of string */ - -/* specify the output selection in _mm_cmpXstri */ -#define _SIDD_LEAST_SIGNIFICANT 0x00 -#define _SIDD_MOST_SIGNIFICANT 0x40 - -/* specify the output selection in _mm_cmpXstrm */ -#define _SIDD_BIT_MASK 0x00 -#define _SIDD_UNIT_MASK 0x40 - -/* Pattern Matching for C macros. - * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms - */ - -/* catenate */ -#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ -#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b) - -#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c) -/* run the 2nd parameter */ -#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__ -/* run the 1st parameter */ -#define SSE2NEON_IIF_1(t, ...) t - -#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b) -#define SSE2NEON_COMPL_0 1 -#define SSE2NEON_COMPL_1 0 - -#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x) -#define SSE2NEON_DEC_1 0 -#define SSE2NEON_DEC_2 1 -#define SSE2NEON_DEC_3 2 -#define SSE2NEON_DEC_4 3 -#define SSE2NEON_DEC_5 4 -#define SSE2NEON_DEC_6 5 -#define SSE2NEON_DEC_7 6 -#define SSE2NEON_DEC_8 7 -#define SSE2NEON_DEC_9 8 -#define SSE2NEON_DEC_10 9 -#define SSE2NEON_DEC_11 10 -#define SSE2NEON_DEC_12 11 -#define SSE2NEON_DEC_13 12 -#define SSE2NEON_DEC_14 13 -#define SSE2NEON_DEC_15 14 -#define SSE2NEON_DEC_16 15 - -/* detection */ -#define SSE2NEON_CHECK_N(x, n, ...) n -#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, ) -#define SSE2NEON_PROBE(x) x, 1, - -#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x)) -#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~) - -#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x)) -#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c)) - -#define SSE2NEON_EAT(...) -#define SSE2NEON_EXPAND(...) __VA_ARGS__ -#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT) - -/* recursion */ -/* deferred expression */ -#define SSE2NEON_EMPTY() -#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY() -#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)() -#define SSE2NEON_EXPAND(...) __VA_ARGS__ - -#define SSE2NEON_EVAL(...) \ - SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__))) -#define SSE2NEON_EVAL1(...) \ - SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__))) -#define SSE2NEON_EVAL2(...) \ - SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__))) -#define SSE2NEON_EVAL3(...) __VA_ARGS__ - -#define SSE2NEON_REPEAT(count, macro, ...) \ - SSE2NEON_WHEN(count) \ - (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \ - SSE2NEON_DEC(count), macro, \ - __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \ - __VA_ARGS__)) -#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT - -#define SSE2NEON_SIZE_OF_byte 8 -#define SSE2NEON_NUMBER_OF_LANES_byte 16 -#define SSE2NEON_SIZE_OF_word 16 -#define SSE2NEON_NUMBER_OF_LANES_word 8 - -#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \ - mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \ - vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \ - vreinterpretq_##type##_m128i(a))); - -#define SSE2NEON_FILL_LANE(i, type) \ - vec_b[i] = \ - vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)); - -#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \ - number_of_lanes, byte_or_word) \ - do { \ - SSE2NEON_CAT( \ - data_type_prefix, \ - SSE2NEON_CAT(size, \ - SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \ - vec_b[number_of_lanes]; \ - __m128i mask = SSE2NEON_IIF(byte_or_word)( \ - vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \ - vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \ - SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \ - SSE2NEON_CAT(type_prefix, size))) \ - for (int i = 0; i < number_of_lanes; i++) { \ - mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \ - size)(SSE2NEON_CAT(vbslq_u, size)( \ - SSE2NEON_CAT(vreinterpretq_u, \ - SSE2NEON_CAT(size, _m128i))(mask), \ - SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \ - vec_b[i], \ - SSE2NEON_CAT( \ - vreinterpretq_, \ - SSE2NEON_CAT(type_prefix, \ - SSE2NEON_CAT(size, _m128i(a))))), \ - SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \ - vec_b[i], \ - SSE2NEON_CAT( \ - vreinterpretq_, \ - SSE2NEON_CAT(type_prefix, \ - SSE2NEON_CAT(size, _m128i(a))))))); \ - } \ - } while (0) - -#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \ - do { \ - SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \ - SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \ - SSE2NEON_CAT(u, size))) \ - } while (0) - -#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \ - static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \ - int lb) \ - { \ - __m128i mtx[16]; \ - PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ - SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ - return SSE2NEON_CAT( \ - _sse2neon_aggregate_equal_any_, \ - SSE2NEON_CAT( \ - SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ - SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ - type))))(la, lb, mtx); \ - } - -#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \ - static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \ - int lb) \ - { \ - __m128i mtx[16]; \ - PCMPSTR_RANGES( \ - a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ - SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \ - return SSE2NEON_CAT( \ - _sse2neon_aggregate_ranges_, \ - SSE2NEON_CAT( \ - SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ - SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ - type))))(la, lb, mtx); \ - } - -#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \ - static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \ - __m128i b, int lb) \ - { \ - __m128i mtx[16]; \ - PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ - SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ - return SSE2NEON_CAT( \ - _sse2neon_aggregate_equal_ordered_, \ - SSE2NEON_CAT( \ - SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ - SSE2NEON_CAT(x, \ - SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \ - SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ - } - -static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) -{ - int res = 0; - int m = (1 << la) - 1; - uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); - uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); - uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); - uint8x16_t vec = vcombine_u8(t_lo, t_hi); - for (int j = 0; j < lb; j++) { - mtx[j] = vreinterpretq_m128i_u8( - vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); - mtx[j] = vreinterpretq_m128i_u8( - vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); - int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; - res |= (tmp << j); - } - return res; -} - -static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) -{ - int res = 0; - int m = (1 << la) - 1; - uint16x8_t vec = - vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); - for (int j = 0; j < lb; j++) { - mtx[j] = vreinterpretq_m128i_u16( - vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); - mtx[j] = vreinterpretq_m128i_u16( - vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); - int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; - res |= (tmp << j); - } - return res; -} - -/* clang-format off */ -#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ - prefix##IMPL(byte) \ - prefix##IMPL(word) -/* clang-format on */ - -SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) - -static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) -{ - int res = 0; - int m = (1 << la) - 1; - uint16x8_t vec = - vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); - for (int j = 0; j < lb; j++) { - mtx[j] = vreinterpretq_m128i_u16( - vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); - mtx[j] = vreinterpretq_m128i_u16( - vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); - __m128i tmp = vreinterpretq_m128i_u32( - vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); - uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), - vreinterpretq_u32_m128i(tmp)); -#if defined(__aarch64__) || defined(_M_ARM64) - int t = vaddvq_u32(vec_res) ? 1 : 0; -#else - uint64x2_t sumh = vpaddlq_u32(vec_res); - int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1); -#endif - res |= (t << j); - } - return res; -} - -static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) -{ - int res = 0; - int m = (1 << la) - 1; - uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); - uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); - uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); - uint8x16_t vec = vcombine_u8(t_lo, t_hi); - for (int j = 0; j < lb; j++) { - mtx[j] = vreinterpretq_m128i_u8( - vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); - mtx[j] = vreinterpretq_m128i_u8( - vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); - __m128i tmp = vreinterpretq_m128i_u16( - vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); - uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), - vreinterpretq_u16_m128i(tmp)); - int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; - res |= (t << j); - } - return res; -} - -#define SSE2NEON_CMP_RANGES_IS_BYTE 1 -#define SSE2NEON_CMP_RANGES_IS_WORD 0 - -/* clang-format off */ -#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ - prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ - prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ - prefix##IMPL(word, uint, u, prefix##IS_WORD) \ - prefix##IMPL(word, int, s, prefix##IS_WORD) -/* clang-format on */ - -SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) - -#undef SSE2NEON_CMP_RANGES_IS_BYTE -#undef SSE2NEON_CMP_RANGES_IS_WORD - -static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) -{ - uint8x16_t mtx = - vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)); - int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); - int m1 = 0x10000 - (1 << la); - int tb = 0x10000 - (1 << lb); - uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi; - uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi; - vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); - vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask); - vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask); - vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask); - vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask); - tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask); - tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask); - - res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx)); - res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx)); - res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo); - res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi); - res_lo = vand_u8(res_lo, vec_mask); - res_hi = vand_u8(res_hi, vec_mask); - - int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); - return res; -} - -static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) -{ - uint16x8_t mtx = - vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); - int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); - int m1 = 0x100 - (1 << la); - int tb = 0x100 - (1 << lb); - uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b); - uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask); - uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask); - uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask); - mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); - mtx = vbslq_u16(vec1, tmp, mtx); - mtx = vandq_u16(mtx, vec_mask); - return _sse2neon_vaddvq_u16(mtx); -} - -#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 -#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0 - -#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \ - static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \ - int bound, int la, int lb, __m128i mtx[16]) \ - { \ - int res = 0; \ - int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \ - uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \ - vld1_u##size(_sse2neon_cmpestr_mask##size##b), \ - vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \ - uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \ - vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \ - vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \ - vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \ - uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \ - uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \ - for (int j = 0; j < lb; j++) { \ - mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \ - vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \ - } \ - for (int j = lb; j < bound; j++) { \ - mtx[j] = vreinterpretq_m128i_u##size( \ - vbslq_u##size(vec1, vec_minusone, vec_zero)); \ - } \ - unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \ - (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \ - for (int i = 0; i < bound; i++) { \ - int val = 1; \ - for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \ - val &= ptr[k * bound + j]; \ - res += val << i; \ - } \ - return res; \ - } - -/* clang-format off */ -#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ - prefix##IMPL(8, 16, prefix##IS_UBYTE) \ - prefix##IMPL(16, 8, prefix##IS_UWORD) -/* clang-format on */ - -SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) - -#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE -#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD - -/* clang-format off */ -#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ - prefix##IMPL(byte) \ - prefix##IMPL(word) -/* clang-format on */ - -SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) - -#define SSE2NEON_CMPESTR_LIST \ - _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \ - _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \ - _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \ - _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \ - _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \ - _(CMP_UWORD_RANGES, cmp_uword_ranges) \ - _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \ - _(CMP_SWORD_RANGES, cmp_sword_ranges) \ - _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \ - _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \ - _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \ - _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \ - _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ - _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \ - _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ - _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered) - -enum { -#define _(name, func_suffix) name, - SSE2NEON_CMPESTR_LIST -#undef _ -}; -typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb); -static cmpestr_func_t _sse2neon_cmpfunc_table[] = { -#define _(name, func_suffix) _sse2neon_##func_suffix, - SSE2NEON_CMPESTR_LIST -#undef _ -}; - -FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) -{ - switch (imm8 & 0x30) { - case _SIDD_NEGATIVE_POLARITY: - res ^= 0xffffffff; - break; - case _SIDD_MASKED_NEGATIVE_POLARITY: - res ^= (1 << lb) - 1; - break; - default: - break; - } - - return res & ((bound == 8) ? 0xFF : 0xFFFF); -} - -FORCE_INLINE int _sse2neon_clz(unsigned int x) -{ -#if defined(_MSC_VER) && !defined(__clang__) - unsigned long cnt = 0; - if (_BitScanReverse(&cnt, x)) - return 31 - cnt; - return 32; -#else - return x != 0 ? __builtin_clz(x) : 32; -#endif -} - -FORCE_INLINE int _sse2neon_ctz(unsigned int x) -{ -#if defined(_MSC_VER) && !defined(__clang__) - unsigned long cnt = 0; - if (_BitScanForward(&cnt, x)) - return cnt; - return 32; -#else - return x != 0 ? __builtin_ctz(x) : 32; -#endif -} - -FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) -{ -#ifdef _MSC_VER - unsigned long cnt; -#if defined(SSE2NEON_HAS_BITSCAN64) - if (_BitScanForward64(&cnt, x)) - return (int) (cnt); -#else - if (_BitScanForward(&cnt, (unsigned long) (x))) - return (int) cnt; - if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) - return (int) (cnt + 32); -#endif /* SSE2NEON_HAS_BITSCAN64 */ - return 64; -#else /* assume GNU compatible compilers */ - return x != 0 ? __builtin_ctzll(x) : 64; -#endif -} - -#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) - -#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ - const int var = (imm & 0x01) ? 8 : 16 - -#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ - int tmp1 = la ^ (la >> 31); \ - la = tmp1 - (la >> 31); \ - int tmp2 = lb ^ (lb >> 31); \ - lb = tmp2 - (lb >> 31); \ - la = SSE2NEON_MIN(la, bound); \ - lb = SSE2NEON_MIN(lb, bound) - -// Compare all pairs of character in string a and b, -// then aggregate the result. -// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the -// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of -// string a and b. -#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ - SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ - SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ - int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ - r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) - -#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ - return (r2 == 0) ? bound \ - : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ - : _sse2neon_ctz(r2)) - -#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ - __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ - if (imm8 & 0x40) { \ - if (bound == 8) { \ - uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ - vld1q_u16(_sse2neon_cmpestr_mask16b)); \ - dst = vreinterpretq_m128i_u16(vbslq_u16( \ - tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ - } else { \ - uint8x16_t vec_r2 = \ - vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ - uint8x16_t tmp = \ - vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ - dst = vreinterpretq_m128i_u8( \ - vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ - } \ - } else { \ - if (bound == 16) { \ - dst = vreinterpretq_m128i_u16( \ - vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ - } else { \ - dst = vreinterpretq_m128i_u8( \ - vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ - } \ - } \ - return dst - -// Compare packed strings in a and b with lengths la and lb using the control -// in imm8, and returns 1 if b did not contain a null character and the -// resulting mask was zero, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra -FORCE_INLINE int _mm_cmpestra(__m128i a, - int la, - __m128i b, - int lb, - const int imm8) -{ - int lb_cpy = lb; - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); - return !r2 & (lb_cpy > bound); -} - -// Compare packed strings in a and b with lengths la and lb using the control in -// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc -FORCE_INLINE int _mm_cmpestrc(__m128i a, - int la, - __m128i b, - int lb, - const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); - return r2 != 0; -} - -// Compare packed strings in a and b with lengths la and lb using the control -// in imm8, and store the generated index in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri -FORCE_INLINE int _mm_cmpestri(__m128i a, - int la, - __m128i b, - int lb, - const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); - SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); -} - -// Compare packed strings in a and b with lengths la and lb using the control -// in imm8, and store the generated mask in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm -FORCE_INLINE __m128i -_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); - SSE2NEON_CMPSTR_GENERATE_MASK(dst); -} - -// Compare packed strings in a and b with lengths la and lb using the control in -// imm8, and returns bit 0 of the resulting bit mask. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro -FORCE_INLINE int _mm_cmpestro(__m128i a, - int la, - __m128i b, - int lb, - const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); - return r2 & 1; -} - -// Compare packed strings in a and b with lengths la and lb using the control in -// imm8, and returns 1 if any character in a was null, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs -FORCE_INLINE int _mm_cmpestrs(__m128i a, - int la, - __m128i b, - int lb, - const int imm8) -{ - (void) a; - (void) b; - (void) lb; - SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); - return la <= (bound - 1); -} - -// Compare packed strings in a and b with lengths la and lb using the control in -// imm8, and returns 1 if any character in b was null, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz -FORCE_INLINE int _mm_cmpestrz(__m128i a, - int la, - __m128i b, - int lb, - const int imm8) -{ - (void) a; - (void) b; - (void) la; - SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); - return lb <= (bound - 1); -} - -#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ - do { \ - if (imm8 & 0x01) { \ - uint16x8_t equal_mask_##str = \ - vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ - uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ - uint64_t matches_##str = \ - vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ - len = _sse2neon_ctzll(matches_##str) >> 3; \ - } else { \ - uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ - vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ - uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ - uint64_t matches_##str = \ - vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ - len = _sse2neon_ctzll(matches_##str) >> 2; \ - } \ - } while (0) - -#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ - int la, lb; \ - do { \ - SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ - SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ - } while (0) - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and returns 1 if b did not contain a null character and the resulting -// mask was zero, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra -FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); - return !r2 & (lb >= bound); -} - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc -FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); - return r2 != 0; -} - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and store the generated index in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri -FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); - SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); -} - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and store the generated mask in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm -FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); - SSE2NEON_CMPSTR_GENERATE_MASK(dst); -} - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and returns bit 0 of the resulting bit mask. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro -FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) -{ - SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); - return r2 & 1; -} - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and returns 1 if any character in a was null, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs -FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) -{ - (void) b; - SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); - int la; - SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); - return la <= (bound - 1); -} - -// Compare packed strings with implicit lengths in a and b using the control in -// imm8, and returns 1 if any character in b was null, and 0 otherwise. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz -FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) -{ - (void) a; - SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); - int lb; - SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); - return lb <= (bound - 1); -} - -// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers -// in b for greater than. -FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - return vreinterpretq_m128i_u64( - vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -#else - return vreinterpretq_m128i_s64(vshrq_n_s64( - vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)), - 63)); -#endif -} - -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 16-bit integer v, and stores the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16 -FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) -{ -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); -#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ - (defined(_M_ARM64) && !defined(__clang__)) - crc = __crc32ch(crc, v); -#else - crc = _mm_crc32_u8(crc, v & 0xff); - crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); -#endif - return crc; -} - -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 32-bit integer v, and stores the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32 -FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) -{ -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); -#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ - (defined(_M_ARM64) && !defined(__clang__)) - crc = __crc32cw(crc, v); -#else - crc = _mm_crc32_u16(crc, v & 0xffff); - crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); -#endif - return crc; -} - -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 64-bit integer v, and stores the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64 -FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) -{ -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); -#elif (defined(_M_ARM64) && !defined(__clang__)) - crc = __crc32cd((uint32_t) crc, v); -#else - crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); - crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); -#endif - return crc; -} - -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 8-bit integer v, and stores the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8 -FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) -{ -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); -#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ - (defined(_M_ARM64) && !defined(__clang__)) - crc = __crc32cb(crc, v); -#else - crc ^= v; -#if defined(__ARM_FEATURE_CRYPTO) - // Adapted from: https://mary.rs/lab/crc32/ - // Barrent reduction - uint64x2_t orig = - vcombine_u64(vcreate_u64((uint64_t) (crc) << 24), vcreate_u64(0x0)); - uint64x2_t tmp = orig; - - // Polynomial P(x) of CRC32C - uint64_t p = 0x105EC76F1; - // Barrett Reduction (in bit-reflected form) constant mu_{64} = \lfloor - // 2^{64} / P(x) \rfloor = 0x11f91caf6 - uint64_t mu = 0x1dea713f1; - - // Multiply by mu_{64} - tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(mu)); - // Divide by 2^{64} (mask away the unnecessary bits) - tmp = - vandq_u64(tmp, vcombine_u64(vcreate_u64(0xFFFFFFFF), vcreate_u64(0x0))); - // Multiply by P(x) (shifted left by 1 for alignment reasons) - tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(p)); - // Subtract original from result - tmp = veorq_u64(tmp, orig); - - // Extract the 'lower' (in bit-reflected sense) 32 bits - crc = vgetq_lane_u32(vreinterpretq_u32_u64(tmp), 1); -#else // Fall back to the generic table lookup approach - // Adapted from: https://create.stephan-brumme.com/crc32/ - // Apply half-byte comparision algorithm for the best ratio between - // performance and lookup table. - - // The lookup table just needs to store every 16th entry - // of the standard look-up table. - static const uint32_t crc32_half_byte_tbl[] = { - 0x00000000, 0x105ec76f, 0x20bd8ede, 0x30e349b1, 0x417b1dbc, 0x5125dad3, - 0x61c69362, 0x7198540d, 0x82f63b78, 0x92a8fc17, 0xa24bb5a6, 0xb21572c9, - 0xc38d26c4, 0xd3d3e1ab, 0xe330a81a, 0xf36e6f75, - }; - - crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F]; - crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F]; -#endif -#endif - return crc; -} - -/* AES */ - -#if !defined(__ARM_FEATURE_CRYPTO) && (!defined(_M_ARM64) || defined(__clang__)) -/* clang-format off */ -#define SSE2NEON_AES_SBOX(w) \ - { \ - w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ - w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ - w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \ - w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \ - w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \ - w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \ - w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \ - w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \ - w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \ - w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \ - w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \ - w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \ - w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \ - w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \ - w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \ - w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \ - w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \ - w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \ - w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \ - w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \ - w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \ - w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \ - w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \ - w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \ - w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \ - w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \ - w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \ - w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \ - w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \ - w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \ - w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \ - w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \ - w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \ - w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \ - w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \ - w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ - w(0xb0), w(0x54), w(0xbb), w(0x16) \ - } -#define SSE2NEON_AES_RSBOX(w) \ - { \ - w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ - w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ - w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ - w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ - w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ - w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ - w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ - w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ - w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ - w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ - w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ - w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ - w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ - w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ - w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ - w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ - w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ - w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ - w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ - w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ - w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ - w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ - w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ - w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ - w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ - w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ - w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ - w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ - w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ - w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ - w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ - w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ - w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ - w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ - w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ - w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ - w(0x55), w(0x21), w(0x0c), w(0x7d) \ - } -/* clang-format on */ - -/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ -#define SSE2NEON_AES_H0(x) (x) -static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); -static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); -#undef SSE2NEON_AES_H0 - -/* x_time function and matrix multiply function */ -#if !defined(__aarch64__) && !defined(_M_ARM64) -#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) -#define SSE2NEON_MULTIPLY(x, y) \ - (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ - ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ - ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ - ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) -#endif - -// In the absence of crypto extensions, implement aesenc using regular NEON -// intrinsics instead. See: -// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ -// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and -// for more information. -FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - static const uint8_t shift_rows[] = { - 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, - 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, - }; - static const uint8_t ror32by8[] = { - 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, - }; - - uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(a); - - /* shift rows */ - w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); - - /* sub bytes */ - // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and - // look up each of the table. After each lookup, we load the next table - // which locates at the next 64-bytes. In the meantime, the index in the - // table would be smaller than it was, so the index parameters of - // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); - // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); - - /* mix columns */ - w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); - w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); - w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - - /* add round key */ - return vreinterpretq_m128i_u8(w) ^ RoundKey; - -#else /* ARMv7-A implementation for a table-based AES */ -#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ - (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ - ((uint32_t) (b1) << 8) | (uint32_t) (b0)) -// muliplying 'x' by 2 in GF(2^8) -#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) -// muliplying 'x' by 3 in GF(2^8) -#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) -#define SSE2NEON_AES_U0(p) \ - SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) -#define SSE2NEON_AES_U1(p) \ - SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p) -#define SSE2NEON_AES_U2(p) \ - SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) -#define SSE2NEON_AES_U3(p) \ - SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) - - // this generates a table containing every possible permutation of - // shift_rows() and sub_bytes() with mix_columns(). - static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { - SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), - SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), - SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), - SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), - }; -#undef SSE2NEON_AES_B2W -#undef SSE2NEON_AES_F2 -#undef SSE2NEON_AES_F3 -#undef SSE2NEON_AES_U0 -#undef SSE2NEON_AES_U1 -#undef SSE2NEON_AES_U2 -#undef SSE2NEON_AES_U3 - - uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] - uint32_t x1 = - _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] - uint32_t x2 = - _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] - uint32_t x3 = - _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] - - // finish the modulo addition step in mix_columns() - __m128i out = _mm_set_epi32( - (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ - aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), - (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^ - aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]), - (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^ - aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]), - (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^ - aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24])); - - return _mm_xor_si128(out, RoundKey); -#endif -} - -// Perform one round of an AES decryption flow on data (state) in a using the -// round key in RoundKey, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 -FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) -{ -#if defined(__aarch64__) - static const uint8_t inv_shift_rows[] = { - 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, - 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, - }; - static const uint8_t ror32by8[] = { - 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, - }; - - uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(a); - - // inverse shift rows - w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); - - // inverse sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); - - // inverse mix columns - // multiplying 'v' by 4 in GF(2^8) - w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); - w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); - v ^= w; - v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); - - w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & - 0x1b); // muliplying 'v' by 2 in GF(2^8) - w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); - w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - - // add round key - return vreinterpretq_m128i_u8(w) ^ RoundKey; - -#else /* ARMv7-A NEON implementation */ - /* FIXME: optimized for NEON */ - uint8_t i, e, f, g, h, v[4][4]; - uint8_t *_a = (uint8_t *) &a; - for (i = 0; i < 16; ++i) { - v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; - } - - // inverse mix columns - for (i = 0; i < 4; ++i) { - e = v[i][0]; - f = v[i][1]; - g = v[i][2]; - h = v[i][3]; - - v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ - SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); - v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ - SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); - v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ - SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); - v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ - SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); - } - - return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; -#endif -} - -// Perform the last round of an AES encryption flow on data (state) in a using -// the round key in RoundKey, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 -FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) -{ -#if defined(__aarch64__) - static const uint8_t shift_rows[] = { - 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, - 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, - }; - - uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(a); - - // shift rows - w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); - - // sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); - - // add round key - return vreinterpretq_m128i_u8(v) ^ RoundKey; - -#else /* ARMv7-A implementation */ - uint8_t v[16] = { - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], - _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], - }; - - return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; -#endif -} - -// Perform the last round of an AES decryption flow on data (state) in a using -// the round key in RoundKey, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 -FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) -{ -#if defined(__aarch64__) - static const uint8_t inv_shift_rows[] = { - 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, - 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, - }; - - uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(a); - - // inverse shift rows - w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); - - // inverse sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); - - // add round key - return vreinterpretq_m128i_u8(v) ^ RoundKey; - -#else /* ARMv7-A NEON implementation */ - /* FIXME: optimized for NEON */ - uint8_t v[4][4]; - uint8_t *_a = (uint8_t *) &a; - for (int i = 0; i < 16; ++i) { - v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; - } - - return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; -#endif -} - -// Perform the InvMixColumns transformation on a and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 -FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) -{ -#if defined(__aarch64__) - static const uint8_t ror32by8[] = { - 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, - }; - uint8x16_t v = vreinterpretq_u8_m128i(a); - uint8x16_t w; - - // multiplying 'v' by 4 in GF(2^8) - w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); - w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); - v ^= w; - v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); - - // multiplying 'v' by 2 in GF(2^8) - w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); - w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); - w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - return vreinterpretq_m128i_u8(w); - -#else /* ARMv7-A NEON implementation */ - uint8_t i, e, f, g, h, v[4][4]; - vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); - for (i = 0; i < 4; ++i) { - e = v[i][0]; - f = v[i][1]; - g = v[i][2]; - h = v[i][3]; - - v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ - SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); - v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ - SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); - v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ - SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); - v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ - SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); - } - - return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); -#endif -} - -// Assist in expanding the AES cipher key by computing steps towards generating -// a round key for encryption cipher using data from a and an 8-bit round -// constant specified in imm8, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 -// -// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. -// This instruction generates a round key for AES encryption. See -// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ -// for details. -FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) -{ -#if defined(__aarch64__) - uint8x16_t _a = vreinterpretq_u8_m128i(a); - uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); - - uint32x4_t v_u32 = vreinterpretq_u32_u8(v); - uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24)); - uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon)); - - return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v)); - -#else /* ARMv7-A NEON implementation */ - uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); - uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); - for (int i = 0; i < 4; ++i) { - ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; - ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; - } - return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, - ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); -#endif -} -#undef SSE2NEON_AES_SBOX -#undef SSE2NEON_AES_RSBOX - -#if defined(__aarch64__) -#undef SSE2NEON_XT -#undef SSE2NEON_MULTIPLY -#endif - -#else /* __ARM_FEATURE_CRYPTO */ -// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and -// AESMC and then manually applying the real key as an xor operation. This -// unfortunately means an additional xor op; the compiler should be able to -// optimize this away for repeated calls however. See -// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a -// for more details. -FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8(veorq_u8( - vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), - vreinterpretq_u8_m128i(b))); -} - -// Perform one round of an AES decryption flow on data (state) in a using the -// round key in RoundKey, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 -FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) -{ - return vreinterpretq_m128i_u8(veorq_u8( - vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), - vreinterpretq_u8_m128i(RoundKey))); -} - -// Perform the last round of an AES encryption flow on data (state) in a using -// the round key in RoundKey, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 -FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) -{ - return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( - vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), - RoundKey); -} - -// Perform the last round of an AES decryption flow on data (state) in a using -// the round key in RoundKey, and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 -FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) -{ - return vreinterpretq_m128i_u8( - veorq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)), - vreinterpretq_u8_m128i(RoundKey))); -} - -// Perform the InvMixColumns transformation on a and store the result in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 -FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) -{ - return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a))); -} - -// Assist in expanding the AES cipher key by computing steps towards generating -// a round key for encryption cipher using data from a and an 8-bit round -// constant specified in imm8, and store the result in dst." -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 -FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) -{ - // AESE does ShiftRows and SubBytes on A - uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)); - -#if !defined(_MSC_VER) || defined(__clang__) - uint8x16_t dest = { - // Undo ShiftRows step from AESE and extract X1 and X3 - u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1) - u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1)) - u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3) - u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3)) - }; - uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon}; - return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r); -#else - // We have to do this hack because MSVC is strictly adhering to the CPP - // standard, in particular C++03 8.5.1 sub-section 15, which states that - // unions must be initialized by their first member type. - - // As per the Windows ARM64 ABI, it is always little endian, so this works - __n128 dest{ - ((uint64_t) u8.n128_u8[0x4] << 0) | ((uint64_t) u8.n128_u8[0x1] << 8) | - ((uint64_t) u8.n128_u8[0xE] << 16) | - ((uint64_t) u8.n128_u8[0xB] << 24) | - ((uint64_t) u8.n128_u8[0x1] << 32) | - ((uint64_t) u8.n128_u8[0xE] << 40) | - ((uint64_t) u8.n128_u8[0xB] << 48) | - ((uint64_t) u8.n128_u8[0x4] << 56), - ((uint64_t) u8.n128_u8[0xC] << 0) | ((uint64_t) u8.n128_u8[0x9] << 8) | - ((uint64_t) u8.n128_u8[0x6] << 16) | - ((uint64_t) u8.n128_u8[0x3] << 24) | - ((uint64_t) u8.n128_u8[0x9] << 32) | - ((uint64_t) u8.n128_u8[0x6] << 40) | - ((uint64_t) u8.n128_u8[0x3] << 48) | - ((uint64_t) u8.n128_u8[0xC] << 56)}; - - dest.n128_u32[1] = dest.n128_u32[1] ^ rcon; - dest.n128_u32[3] = dest.n128_u32[3] ^ rcon; - - return dest; -#endif -} -#endif - -/* Others */ - -// Perform a carry-less multiplication of two 64-bit integers, selected from a -// and b according to imm8, and store the results in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 -FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) -{ - uint64x2_t a = vreinterpretq_u64_m128i(_a); - uint64x2_t b = vreinterpretq_u64_m128i(_b); - switch (imm & 0x11) { - case 0x00: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b))); - case 0x01: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b))); - case 0x10: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b))); - case 0x11: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b))); - default: - abort(); - } -} - -FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode(void) -{ - union { - fpcr_bitfield field; -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) || defined(_M_ARM64) - r.value = _sse2neon_get_fpcr(); -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF; -} - -// Count the number of bits set to 1 in unsigned 32-bit integer a, and -// return that count in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 -FORCE_INLINE int _mm_popcnt_u32(unsigned int a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) -#if __has_builtin(__builtin_popcount) - return __builtin_popcount(a); -#elif defined(_MSC_VER) - return _CountOneBits(a); -#else - return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a))); -#endif -#else - uint32_t count = 0; - uint8x8_t input_val, count8x8_val; - uint16x4_t count16x4_val; - uint32x2_t count32x2_val; - - input_val = vld1_u8((uint8_t *) &a); - count8x8_val = vcnt_u8(input_val); - count16x4_val = vpaddl_u8(count8x8_val); - count32x2_val = vpaddl_u16(count16x4_val); - - vst1_u32(&count, count32x2_val); - return count; -#endif -} - -// Count the number of bits set to 1 in unsigned 64-bit integer a, and -// return that count in dst. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 -FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) -{ -#if defined(__aarch64__) || defined(_M_ARM64) -#if __has_builtin(__builtin_popcountll) - return __builtin_popcountll(a); -#elif defined(_MSC_VER) - return _CountOneBits64(a); -#else - return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a))); -#endif -#else - uint64_t count = 0; - uint8x8_t input_val, count8x8_val; - uint16x4_t count16x4_val; - uint32x2_t count32x2_val; - uint64x1_t count64x1_val; - - input_val = vld1_u8((uint8_t *) &a); - count8x8_val = vcnt_u8(input_val); - count16x4_val = vpaddl_u8(count8x8_val); - count32x2_val = vpaddl_u16(count16x4_val); - count64x1_val = vpaddl_u32(count32x2_val); - vst1_u64(&count, count64x1_val); - return count; -#endif -} - -FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) -{ - // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, - // regardless of the value of the FZ bit. - union { - fpcr_bitfield field; -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) || defined(_M_ARM64) - r.value = _sse2neon_get_fpcr(); -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; - -#if defined(__aarch64__) || defined(_M_ARM64) - _sse2neon_set_fpcr(r.value); -#else - __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ -#endif -} - -// Return the current 64-bit value of the processor's time-stamp counter. -// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc -FORCE_INLINE uint64_t _rdtsc(void) -{ -#if defined(__aarch64__) || defined(_M_ARM64) - uint64_t val; - - /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the - * system counter is at least 56 bits wide; from Armv8.6, the counter - * must be 64 bits wide. So the system counter could be less than 64 - * bits wide and it is attributed with the flag 'cap_user_time_short' - * is true. - */ -#if defined(_MSC_VER) && !defined(__clang__) - val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2)); -#else - __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); -#endif - - return val; -#else - uint32_t pmccntr, pmuseren, pmcntenset; - // Read the user mode Performance Monitoring Unit (PMU) - // User Enable Register (PMUSERENR) access permissions. - __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); - if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code. - __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); - if (pmcntenset & 0x80000000UL) { // Is it counting? - __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); - // The counter is set up to count every 64th cycle - return (uint64_t) (pmccntr) << 6; - } - } - - // Fallback to syscall as we can't enable PMUSERENR in user mode. - struct timeval tv; - gettimeofday(&tv, NULL); - return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec; -#endif -} - -#if defined(__GNUC__) || defined(__clang__) -#pragma pop_macro("ALIGN_STRUCT") -#pragma pop_macro("FORCE_INLINE") -#endif - -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC pop_options -#endif - -#endif