Browse Source
core: core_timing_util: Optimize core timing math.
core: core_timing_util: Optimize core timing math.
- Avoids a lot of unnecessary 128-bit math for imperceptible accuracy.nce_cpp
3 changed files with 48 additions and 98 deletions
@ -1,84 +0,0 @@ |
|||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
|
||||
// Licensed under GPLv2+
|
|
||||
// Refer to the license.txt file included.
|
|
||||
|
|
||||
#include "core/core_timing_util.h"
|
|
||||
|
|
||||
#include <cinttypes>
|
|
||||
#include <limits>
|
|
||||
#include "common/logging/log.h"
|
|
||||
#include "common/uint128.h"
|
|
||||
#include "core/hardware_properties.h"
|
|
||||
|
|
||||
namespace Core::Timing { |
|
||||
|
|
||||
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE; |
|
||||
|
|
||||
s64 msToCycles(std::chrono::milliseconds ms) { |
|
||||
if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) { |
|
||||
LOG_ERROR(Core_Timing, "Integer overflow, use max value"); |
|
||||
return std::numeric_limits<s64>::max(); |
|
||||
} |
|
||||
if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) { |
|
||||
LOG_DEBUG(Core_Timing, "Time very big, do rounding"); |
|
||||
return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000); |
|
||||
} |
|
||||
return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000; |
|
||||
} |
|
||||
|
|
||||
s64 usToCycles(std::chrono::microseconds us) { |
|
||||
if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) { |
|
||||
LOG_ERROR(Core_Timing, "Integer overflow, use max value"); |
|
||||
return std::numeric_limits<s64>::max(); |
|
||||
} |
|
||||
if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) { |
|
||||
LOG_DEBUG(Core_Timing, "Time very big, do rounding"); |
|
||||
return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000); |
|
||||
} |
|
||||
return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000; |
|
||||
} |
|
||||
|
|
||||
s64 nsToCycles(std::chrono::nanoseconds ns) { |
|
||||
const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE); |
|
||||
return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first; |
|
||||
} |
|
||||
|
|
||||
u64 msToClockCycles(std::chrono::milliseconds ns) { |
|
||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); |
|
||||
return Common::Divide128On32(temp, 1000).first; |
|
||||
} |
|
||||
|
|
||||
u64 usToClockCycles(std::chrono::microseconds ns) { |
|
||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); |
|
||||
return Common::Divide128On32(temp, 1000000).first; |
|
||||
} |
|
||||
|
|
||||
u64 nsToClockCycles(std::chrono::nanoseconds ns) { |
|
||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); |
|
||||
return Common::Divide128On32(temp, 1000000000).first; |
|
||||
} |
|
||||
|
|
||||
u64 CpuCyclesToClockCycles(u64 ticks) { |
|
||||
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ); |
|
||||
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; |
|
||||
} |
|
||||
|
|
||||
std::chrono::milliseconds CyclesToMs(s64 cycles) { |
|
||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000); |
|
||||
u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; |
|
||||
return std::chrono::milliseconds(ms); |
|
||||
} |
|
||||
|
|
||||
std::chrono::nanoseconds CyclesToNs(s64 cycles) { |
|
||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000000000); |
|
||||
u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; |
|
||||
return std::chrono::nanoseconds(ns); |
|
||||
} |
|
||||
|
|
||||
std::chrono::microseconds CyclesToUs(s64 cycles) { |
|
||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000000); |
|
||||
u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; |
|
||||
return std::chrono::microseconds(us); |
|
||||
} |
|
||||
|
|
||||
} // namespace Core::Timing
|
|
||||
@ -1,24 +1,59 @@ |
|||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project |
|
||||
// Licensed under GPLv2+ |
|
||||
|
// Copyright 2020 yuzu Emulator Project |
||||
|
// Licensed under GPLv2 or any later version |
||||
// Refer to the license.txt file included. |
// Refer to the license.txt file included. |
||||
|
|
||||
#pragma once |
#pragma once |
||||
|
|
||||
#include <chrono> |
#include <chrono> |
||||
|
|
||||
#include "common/common_types.h" |
#include "common/common_types.h" |
||||
|
#include "core/hardware_properties.h" |
||||
|
|
||||
namespace Core::Timing { |
namespace Core::Timing { |
||||
|
|
||||
s64 msToCycles(std::chrono::milliseconds ms); |
|
||||
s64 usToCycles(std::chrono::microseconds us); |
|
||||
s64 nsToCycles(std::chrono::nanoseconds ns); |
|
||||
u64 msToClockCycles(std::chrono::milliseconds ns); |
|
||||
u64 usToClockCycles(std::chrono::microseconds ns); |
|
||||
u64 nsToClockCycles(std::chrono::nanoseconds ns); |
|
||||
std::chrono::milliseconds CyclesToMs(s64 cycles); |
|
||||
std::chrono::nanoseconds CyclesToNs(s64 cycles); |
|
||||
std::chrono::microseconds CyclesToUs(s64 cycles); |
|
||||
|
|
||||
u64 CpuCyclesToClockCycles(u64 ticks); |
|
||||
|
namespace detail { |
||||
|
constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000; |
||||
|
constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000; |
||||
|
} // namespace detail |
||||
|
|
||||
|
[[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) { |
||||
|
return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) { |
||||
|
return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) { |
||||
|
return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) { |
||||
|
return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) { |
||||
|
return us.count() * detail::CNTFREQ_ADJUSTED / 1000; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) { |
||||
|
return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) { |
||||
|
return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED; |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) { |
||||
|
return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED); |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) { |
||||
|
return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED); |
||||
|
} |
||||
|
|
||||
|
[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) { |
||||
|
return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED); |
||||
|
} |
||||
|
|
||||
} // namespace Core::Timing |
} // namespace Core::Timing |
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue